
International Journal of Advanced Technology and Engineering Exploration, Vol 10(98)

ISSN (Print): 2394-5443 ISSN (Online): 2394-7454

http://dx.doi.org/10.19101/IJATEE.2021.876325

37

Framework for deep learning based model for human activity recognition

(HAR) using adapted PSRA6 dataset

Rukhsarbano S. Sheikh
1
, Sudhir Madhav Patil

2*
 and Maneetkumar R. Dhanvijay

2

PG Student (M. Tech. Artificial Intelligence and Robotics), Department of Manufacturing Engineering and

Industrial Management, College of Engineering Pune [COEP], Shivajinagar, Pune: 411005, Maharashtra State,

India
1

Associate Professor, Department of Manufacturing Engineering and Industrial Management, College of Engineering

Pune [COEP], Shivajinagar, Pune: 411005, Maharashtra State, India
2

Received: 04-July-2022; Revised: 19-January-2023; Accepted: 22-January-2023

©2023 Rukhsarbano S. Sheikh et al. This is an open access article distributed under the Creative Commons Attribution (CC BY)

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1.Introduction
Processing/manufacturing plants of national

importance, airfields, harbours, army/navy

installations/organizations/bases, national borders,

and other critical industry and the like are considered

as critical infrastructure sites (CIS). Perimeter

surveillance at CIS is a critical concern for all site

owners around the world. Surveillance at perimeter

border now use cutting-edge technology. These

technologies make perimeter border security smarter

and more effective.

*Author for correspondence

Humans are extremely skilled at detecting and

classifying suspicious human activity at perimeter

border crossings, but humans still make mistakes.

The nature of the job or task is the primary cause of

the errors. It takes hours to simply watch the

perimeter surveillance footage. A computer, on the

other hand, can work indefinitely, reducing the

possibility of human errors or mistakes. As a result,

automating the detection and classification of

suspicious human activity are proposed, which assists

the operator and makes perimeter border surveillance

more effective and efficient [1].

Human activity can be recognised in three ways:

sensor-based, vision-based, and multimodal (a

Research Article

Abstract
Perimeter surveillance at critical infrastructure sites is the most crucial aspect for such site owners. The titleholders use

enhanced technology to keep an eye on suspicious activities and ground level movements using artificial intelligence (AI)-

based smart cameras on perimeter border. In recent years, the use of AI has increased in the surveillance system that is

deployed at critical areas to obtain a live feed of the ground situation. This allows the detection of human intrusions and

the classification of targets based on human activity recognition (HAR). HAR is an important task for timely prevention

of any kind of attack or intrusion. Surveillance is the most common application of vision-based HAR research. In recent

years, deep learning has led to many AI applications in surveillance. This paper reports a customised video dataset

concerning to perimeter surveillance related activity for 6 human action classes (PSRA6) pertaining to suspicious human

activity through HAR. Three simple and built-from-scratch deep learning based convolutional neural network (CNN)

architectures: convolution and long short-term memory (CONVLSTM), long-term recurrent convolutional network

(LRCN), and 2-layer CNN, are used for the intended HAR. Python interface for all the three architectures has been

provided by using Keras library. Performances of these architectures are investigated in terms of accuracy, precision,

recall and F1 score. This work presented an effective method for collecting and characterising the adapted PSRA6

dataset. Based on the performance comparison, the 2-layer CNN architecture outperforms all other architectures with an

accuracy of 96.77%, loss of 0.21, weighted average precision of 97%, weighted average recall of 97%, and weighted

average F1 score of 97%. Though the designed architectures are limited by computational power, the 2-layer CNN model

performed the best.

Keywords
CNN, Deep learning, Keras, Human action recognition, PSRA6, Neural network.

Rukhsarbano S. Sheikh et al.

38

combination of sensor and vision-based). Researchers

can use any type of recognition to begin their work in

human activity recognition (HAR) research,

depending on their needs and available resources.

HAR has a large area of application such as

healthcare, surveillance, human-machine interaction,

etc. [2, 3]. There are various challenges in vision-

based HAR such as anthropometric variation (pose

and shape, motion, fusion of motion and appearance),

multiview variation, cluttered and dynamic

background, intra-class variability, inter-class

similarity, low quality videos, occlusion, illumination

variation, shadow and scale variation, poor weather

conditions, and insufficient data [4]. Authors' have

addressed some of these challenges using vision-

based, spatial-temporal feature extraction HAR

model. In any way of recognition, the selection of

two things is most important: one is the dataset, and

the other is the deep learning model.

Many HAR systems are already in place [3]. Many

datasets relating to human action classes are also

developed by researchers to fulfil their respective

HAR requirements [513]. Datasets containing low

resolution videos are also utilised effectively for

HAR [14, 15]. But in this work, the focus is on

perimeter border site surveillance at CIS. For that, a

new customized human video dataset is created. The

customized dataset contains selective perimeter

border-site suspicious human activity because there is

no such adequate human activity dataset available to

address the intended human activity concerns. Also,

there are lots of deep learning models used for HAR,

such as residual networks (ResNets), visual geometry

group-16 (VGG16), etc. [1621]. But they are

complex networks that cannot be easily understood

for further modification by anyone who is just a

beginner in this research field. Also, this complex

model requires a dataset of different parameters to

suite their requirements, such as being labelled, etc.

[2224]. The novelty of this paper lays in reporting

three deep learning models that are simple and easy

to understand. All models are built from scratch and

can be trained on raw customized video datasets for

researchers who are new in this field to modify

further. There is no need of labelled datasets. While

meeting the challenges of vision-based HAR towards

low quality videos, cluttered and dynamic

background, poor weather conditions the 2-layer

convolutional neural network (CNN) architecture

outperforms all other architectures for the proposed

adapted but balanced dataset. The challenges of

multiview variation, intra-class variability, and inter-

class similarity have posed limitations while

identifying between crawling and wall climbing

actions.

This paper proposes a framework for surveillance

application at perimeter border sites using artificial

intelligence (AI) tools and techniques such as deep

learning-based models. In the current developing

world, security and surveillance are being considered

as the most important aspects that has motivated to

undertake this work. As technology enhances so fast,

the security systems can be made smarter for

surveillance just by using surveillance camera input

to the system, which can predict whether there is any

suspicious activity going on or not at the perimeter

border site. In this type of system, a deep learning

model is trained using a human action video dataset.

Numerous practical human action video datasets are

available, but there is no such adequate dataset

available for border site perimeter surveillance, that

includes suspicious activity of interest of current

work such as crawling, wall climbing, gun firing, etc.

The main aim of this work was to create a dataset

related to border perimeter surveillance and give a

baseline performance of the dataset using three deep

learning models to accurately recognise the intended

suspicious human activity. To carry out the work, the

stages included are the literature review of related

work, the selection of six human activities for

creation of dataset, the selection of different CNN

deep learning models, dataset generation, the training

and testing of deep learning models, obtaining a

performance matrix, and comparative analysis of

chosen deep learning models.

In this work, the chosen application of HAR is

surveillance at perimeter border sites of critical

infrastructure. There is usually a large network of

surveillance cameras at the perimeter border site,

which can be used as an input to a trained deep

learning model to recognise human action from the

surveillance video. In the security network of the

border site, they already require high-resolution

surveillance cameras and a fast-processing unit such

as a graphics processing unit (GPU) for continuous

monitoring. In such application areas, the

implementation of a vision-based HAR model is

beneficial because there is no need for any extra

sensors and processing units. In this work a vision-

based, spatial-temporal feature extraction HAR

model has been chosen based on the application

domain. Significant contributions and findings of the

work presented in this paper are as follows:

International Journal of Advanced Technology and Engineering Exploration, Vol 10(98)

39

1. A new adapted, built from scratch, and unlabelled

dataset, concerning to perimeter surveillance

related activity for 6 human action classes

(PSRA6), contributing towards HAR.

2. Analysis of CNN for feature reduction and

visualization.

3. Evolution of a customized CNN based architecture

for vision based HAR to address the challenges

such as multiview variation, cluttered and dynamic

background, intra-class variability, inter-class

similarity, low quality videos etc.

4. Performance analysis of deep learning algorithms

like convolution and long short term memory

(CONVLSTM), long-term recurrent convolutional

network (LRCN) and 2-layer CNN for HAR on a

PSRA6 Dataset.

5. Performance analysis of three different CNN

architecture for HAR on a PSRA6 dataset by

varying the parameters such as activation function,

pooling function, and dropout percentage.

6. Recommendation of better performing deep

learning based convolutional model.

The article is structured as follows: section 2 includes

a brief review of prior related research about datasets

and the state of art deep learning models employed to

accomplish HAR, section 3 discusses the methods by

describing dataset creation steps and CNN models for

HAR, section 4 presents results of aforementioned

CNN models on a PSRA6 benchmark datasets,

section 5 includes brief discussion and finally the

conclusion and suggestions for additional research

are covered in section 6.

2.Literature review
Border security of CIS or areas is a serious concern

for all titleholders around the world. The security and

patrol activities at the perimeter border site now use

cutting-edge technology. These technologies make

security system smarter and more effective.

Unauthorized migrants, illegal transportation, and

potential intruders are the three main perimeter

border threats. For making these perimeter border

security systems smarter, various AI techniques are

employed nowadays [1]. To make a vision-based

surveillance system smarter using deep learning, it

requires two main things: datasets and deep learning

models.

The literature review is divided into two subsections.

One is related to the review of available datasets

pertaining to HAR and methodology adopted while

creating those respective dataset and another is

related to various deep learning models available for

HAR.

2.1Datasets and methodology for dataset creation

The datasets which are used in HAR can be sensor-

based, vision-based and multimodal-based. The

proposed work is related to vision-based surveillance

hence the discussion in this section is limited to only

various available video datasets that are related to

vision-based HAR.

The dataset from university of central Florida (UCF)

named as UCF50 contains 50 action classes with

6681 clips, which is extension of UCF11 dataset with

addition of new action classes. This dataset

comprises all unconstrained videos, collected from

web only. Further to video collection filtering,

trimming of videos are done manually. Optical flow

technique along with scene context descriptor were

used to determine the baseline performance of

UCF50 dataset for their HAR model. The model

could recognize human action according to

background scene of action videos with an accuracy

of 68.20% [5]. The UCF101 dataset contains 101

action classes with 13320 clips, which is extension of

UCF50 dataset with addition of new action classes.

This dataset also comprises all unconstrained videos,

collected from web only. Further to video collection

filtering, trimming of videos are done manually.

Baseline performance of UCF101 dataset was

obtained using bag of words approach with accuracy

of 44.50% [6]. Human motion database 51

(HMDB51) dataset contains 51 action classes with

6766 clips. Videos for HMDB51 dataset were

collected from different web sources under the

observation of two skilled persons to ensure

consistency. A group of students was involved to

collect videos from different internet sources

satisfying certain customized minimum quality

standards (no. of action per clip, pixel height for main

actor, contrast level, clip length, compression

artifacts etc.) set by observers. Labelling dataset with

meta information for more precise evaluation, video

normalization and stabilization were the steps

followed further to video collection. Biologically

motivated and spatial-temporal bag of words models

were used to obtain baseline performance [7]. The

dataset made available by Sweden based Kungliga

Tekniska Högskolan (KTH) Royal Institute of

Technology named as KTH dataset contains 6 action

classes with 600 clips. Videos for the dataset were

collected from different web sources. Also, they

removed irrelevant videos manually and trimmed into

clips. Baseline performance of KTH dataset was

Rukhsarbano S. Sheikh et al.

40

obtained using support vector machine (SVM)

classification with local space-time features which is

usually recommended for complex motion pattern

recognition [8]. Deep minds proposed Kinetics-400,

the largest video dataset with high-quality resolution

and sound. This dataset is used in many applications

like audio detection, image segmentation, and non-

visual modalities. This dataset contains 400 action

classes with 400 clips per action. Dataset collection

process involved steps like obtain action list,

candidate clips for temporal positioning, manually

labelling with non-exhaustive approach, cleaning and

denoising, deleting duplicate videos, deleting noisy

videos, and final filtering. Baseline performance of

Kinetics-400 was obtained with long short term

memory (LSTM), two-stream, and three-dimensional

(3D) CNN [9]. Merging between the atomic visual

actions (AVA) with multilabel and Kinetics datasets

with single label was reported in AVA-Kinetics

dataset. AVA-Kinetics has 80 action classes. It is a

subset of the Kinetics-700 dataset with AVA

annotations. The process of annotation involves

person detection using faster region-based

convolutional neural network (faster RCNN), key

frames selection, missing box annotation, human

action annotation and human action verification [10].

Real-world fighting-2000 (RWF-2000) has only one

class with a total of 2000 video clips. Videos were

collected from YouTube. Those videos were of

several surveillance camera footages related to real

world fighting scenes uploaded by YouTube users.

Further to video collection filtering, trimming of

videos were done manually. Baseline performance of

RWF-2000 was obtained using gated network, which

combines merit of both 3D CNN and optical flow,

with accuracy of 87.25% [11]. Okutama-Action has

12 action classes. It consists of 43 minute-long, fully

annotated video sequences of aerial views that are

used in unmanned aerial vehicles (UAVs) for air

surveillance. Data collection designing involved

several steps. The segregation of collected videos

was carried out based on action, different camera

angles (45 or 90 degree) and UAVs configuration

(10-45 meter). Further, the dataset annotation was

implemented using video annotation tool from Irvin,

California (VATIC), an open-source tool, with

bounding box. Baseline performance of Okutama-

Action was obtained using single short detector

(SSD) with 87.25% accuracy. It involved three steps:

first, obtain action class and location as bounding

boxes; second, combine the recognition and

classification score; and third, build action tubes

incrementally to provide spatial-temporal consistency

[12]. Multicamera human action video (MuHAVi)

dataset is the data with manually annotated silhouette

data that has been generated for the purpose of

evaluating silhouette-based human action recognition

methods. Subset of dataset are manually annotated to

reduce size for complete action recognition. It uses 8

cameras for same action capturing from 8 different

views. Recognition system involved two major steps,

first is, feature extraction and second is, action

classification [13]. Some research on action

recognition focuses on low-resolution and low-

quality video datasets for making action recognition

systems more realistic [14, 15].

The cited datasets do not contain the action classes

that are of the authors‟ interest. For the human action

classes PSRA6 dataset is needed. There is no

adequate dedicated dataset available so we have

created the related dataset through secondary

resources.

2.2Deep learning models

Real-time HAR is a challenging task. After the study

of different datasets, the next most important part is

deep learning based model selection. HAR can be

carried out using transfer learning with deep

representation. A hybrid model framework can be

used. It includes the first step of feature extraction

using a pre-trained CNN model, the second step

through SVM as a classifier, and the third step

through k-nearest neighbor (KNN) again as a

classifier [16]. For feature extraction and action

recognition, there are various deep learning models

available, such as CNN, 3D CNN, LSTM, recurrent

neural network (RNN), region-based convolutional

neural network (RCNN), faster RCNN, ResNets,

CNN-LSTM, object-oriented you only look once,

version 3 (YOLOv3), VGG16, Inception-v2, etc.

These models are used in various image, audio, and

video classification problems. The CNN model is the

most popular classifier in deep neural networks

[1724]. This deep learning model is complex and a

standard one i.e. difficult to understand for further

modification as per adapted PSRA6 dataset. As a

result, for the work presented here, a basic CNN

model is chosen such that it can be built from scratch

for experimentation with the adapted PSRA6 dataset.

The CNN-LSTM approach is a holistic deep

learning-based architecture. It is a hybrid model, and

it reduces the task of advanced feature engineering. It

improves the predictive accuracy of human activity

based on raw data. It also uses spatial-temporal

feature extraction [18]. Based on HAR with CNN and

convolution auto-encoder, a deep CNN model can be

International Journal of Advanced Technology and Engineering Exploration, Vol 10(98)

41

used as a classifier for activity recognition as CNN

can process raw inputs directly [19, 20]. HAR can be

done using the faster RCNN, Inception-v2 and the

object detection model YOLOv3 [21]. Yolov3 is an

object detection model; including it in the action

recognition model makes the system more complex,

but it has no effect on accuracy; it simply creates a

bounding box around the person performing the

action. Non-vision based HAR uses automatic

extraction of discriminative features to recognize the

activity. Non-vision-based action recognition sticks

to some limited human actions because it depends on

sensor data. It uses a novel CNN-based approach,

which is practical and gives good accuracy [22].

In computer vision, approaches like the classification

of full-body motion and many more are available for

action recognition. Spatial and temporal feature

extraction, action segmentation, and representation of

view-invariant actions are useful in such cases [23].

In a 3D CNN-based deep learning paradigm, action

recognition methods in computer vision should be

computationally fast. A hybrid "handcrafted/learned"

feature framework based on Hough forests and two-

dimensional (2D) CNN gives better accuracy than the

computationally costlier "handcrafted" spatial-

temporal feature extraction [24].

Image classification with greater accuracy is the most

challenging task in image processing. In many other

image classification problems, too, CNN is the most

popular approach [2528]. VGG16-principal

component analysis (PCA)-multilayer perceptron

model integrated approach includes image

classification by feature selection and feature

reduction through transfer learning and PCA,

respectively. Transfer learning is less accurate than

feature learning. Feature extraction is done by the

VGG16 model. VGG16-PCA helped to speed up

image reorganization. SVM and random forest (RF)

algorithms can be employed as classifiers [25]. The

best error rate was achieved by faster training

through non-saturating neurons for a large, deep

CNN with five convolutional layers, followed by

max-pooling layers and two globally connected

layers [26]. CNN models are the most widely used

deep learning models. One of the applications of

CNN is the identification of classes of garment

design. AlexNet and VGGNet CNN models are also

available [27]. In the medical field too, deep learning

plays an important role in disease diagnosis, such as

the identification of diseases based on tongue color

image analysis. This included the stages as: 1. the

preprocessing stage of noise removal with data

augmentation and bilateral filtering (BF); 2. feature

extraction by deep learning with depthwise separable

convolution (Xception) model (DLXM) 3.

identification of distinct types of diseases through

categorization of feature vectors using bagging

classifier (BC) and multilayer perceptron classifier

(MLPC) models yielded very good classification

performance [28]. Figure 1 shows some of the deep

learning-based action recognition solutions.

Figure 1 Deep learning based action recognition

solutions

In most of the research work on HAR, the CNN

model is used as a deep learning model [29]. Any

machine learning algorithm can benefit from the use

of adaptive boosting (AdaBoost). It works best with

slow learners and is not recommended for good

learners as it increases the complexity of the model.

On a classification problem, these are models that

achieve accuracy just above random chance [30]. In

healthcare, HAR is widely used to monitor patients'

conditions and provide rapid disease diagnosis. Both

vision-based and sensor-based techniques are used in

the healthcare system. There are five popular

convolutional neural network architectures

(GoogleNet, SqueezeNet, DenseNet, ShuffleNet, and

MobileNetV2) used for the classification of images.

In the diagnosis of lung cancer, GoogleNet

performed better because, in this field, it required

classification with high accuracy [31, 32].

In the HAR case, there are many feature extraction

techniques, such as multichannel feature extraction,

spatial-temporal feature extraction, etc. [3335].

Because handcrafted feature extraction is a time-

consuming process, it is preferable to use this

Rukhsarbano S. Sheikh et al.

42

multichannel or spatial-temporal feature extraction

technique. Spatial-temporal feature extraction can be

performed when there is data related to time and

space, as there are many ways to take input data for

HAR, such as smartphone sensor data, video

surveillance vision-based data, or multimodal data (a

combination of both) [3638]. Spatial-temporal

feature extraction can be used for healthcare

monitoring of patients; both sensor and vision-based

data are required, but for surveillance applications,

vision-based data is preferable because it monitors

human outdoor activity [39]. There are two ways of

solving deep learning problems: either build a model

from scratch or use a pre-trained model with transfer

learning techniques. Pre-trained models are already

trained models with large datasets.

The application under consideration presented in this

paper is border site surveillance hence vision-based

HAR has been chosen, as many HAR problems

prefer transfer learning using a complex deep

learning model. The HAR problem presented in this

paper is completely vision-based since the input is a

video sequence from a surveillance camera.

Conventional "handcrafted" feature extraction is a

time-consuming process; hence, it is decided to use

spatial-temporal feature extraction. It is like the video

classification problem in deep learning. The main

aim of this adapted PSRA6 dataset is to make the

perimeter border surveillance system smarter to avoid

any type of violence or nuisance at the border site. In

this adapted PSRA6 dataset, all videos are taken from

different secondary data resources, like social media

and some websites on the internet like YouTube, etc.

CNN models are much more accurate at recognizing

human activity. Also, for beginners who want to

make a simple video classifier, a simple 2-layer CNN

model is preferable to start the work.

However, for the purposes of the study proposed in

this paper, it was decided that instead of transfer

learning and using an already trained model, they

would create a CNN model from scratch. Based on

this review, the work has been carried out, which

included vision-based input, spatial-temporal feature

extraction, model building from scratch and

performance analysis of the selected deep learning

models CONVLSTM, LRCN and 2-layer CNN.

Python interface for all the three models has been

provided by using Keras library.

In this research case, the dataset is newly created. A

model can be trained on a new dataset using the

transfer learning technique, but it achieves less

accuracy when the dataset has fewer classes and is

smaller in size; the same is expected to happen with

the adapted PSRA6 dataset. To expect improvements

in the accuracy of the training model, the authors

decided to build it from scratch. Thus, the three deep

learning models (CONVLSTM, LRCN, and 2-layer

CNN) are evaluated and their performance is

discussed.

3.Methods

This section clarifies the research methods used to

conduct this study. The necessary information, like

the method chosen to make the PSRA6 dataset has

been explained i.e., data collection techniques, data

preparation techniques, data analyzing techniques etc.

Also, it includes the details on the selection of deep

learning models to address the HAR problem in this

research work. The authors selected three models

based on CNN-architecture to check the performance

of the PSRA6 dataset. These models are built from

scratch using Kera‟s python library. Then after

presenting the training and testing of model the

section further describes the way to use this system in

real time application. Figure 2 shows steps of

proposed work vis-a-vis architectural framework

used for the whole proposed work. Thus, the whole

work is divided mainly into four steps:

1. Data collection and dataset creation for the

selected six human activities (section 3.1)

2. Selection of deep learning models that can be

created from scratch for our custom dataset

(section 3.2.1)

3. Training of the selected deep learning models to

evaluate the best model for testing (section 3.2.2)

4. Testing of deep learning models with new input

videos (section 3.2.3)

All the datasets, discussed in section 2.1 of literature

review, are collected from different resources like

movies, social media (mostly YouTube), surveillance

cameras, etc. Surveillance camera videos are more

realistic since they are recorded in real scenarios.

They have a noisy background, inter-class variation,

occlusion, etc. There is more variation in those cited

datasets. The variations are mostly due to the

inclusion of particular action classes. The action

classes in those cited datasets are not related to intend

HAR classes required at the perimeter border site

surveillance of authors‟ interest. So, there is a need to

have such a unique dataset that will be mostly useful

for training of deep learning model(s) which can

detect the six human actions of authors‟ customized

interest i.e., fighting, gun firing, crawling, wall

climbing, falling of humans, and walking with dogs,

International Journal of Advanced Technology and Engineering Exploration, Vol 10(98)

43

for border surveillance purposes. The customized

video dataset presented here is concerning to PSRA6

which contains intended six action classes that are

related to border surveillance of authors‟ interest. The

cited datasets do not contain the action classes that

are of the authors‟ interest. For the human action

classes needed for PSRA6 dataset, there is no

adequate dedicated dataset available. To overcome

this, authors have first created the respective related

dataset through secondary resources. This paper

introduces new PSRA6 video dataset for the

recognition of six human activities for border

surveillance purposes. Such a dataset is mainly used

to train a classification model to recognize unusual

human activity at border site. Table 1 shows a list of

some of the existing HAR datasets with details to

compare with authors adapted PSRA6 dataset.

Figure 2 Steps of proposed work and architectural framework

Table 1 Summary of details of some major human action video datasets

Release year Dataset Number of Actions Number of clips Resources

2004 KTH [8] 6 600 Actor staged

2010 UCF50 [5] 50 6681 YouTube

2011 HMDB51 [7] 51 6766 Movies, YouTube, Web

2012 UCF101 [6] 101 13320 YouTube

2020 RWF-2000 [11] 2 2000 Surveillance camera

2022 PSRA6 6 3000 Movies, YouTube, Web

3.1Dataset creation
This section is about the detailed information about

the adapted PSRA6 dataset and steps to create this

dataset.
3.1.1Dataset details
This paper reports a customised video dataset

concerning PSRA6 pertaining to suspicious human

activity through HAR. It includes a total of six

human action classes that are related to border

surveillance, e.g., fighting, crawling, gun firing, wall

climbing, falling of human, and walking with dog etc.

The PSRA6 dataset is expected to correlate to human

activity at border sites of critical infrastructure such

as processing/manufacturing plants of national

importance, airfields, harbours, army/navy

installations/organizations/bases, national borders,

and other critical industry and the like. As

surveillance camera videos of such border sites are

not available to the common man and also there is no

such dataset readily available related to border

surveillance hence there is need to create adapted

PSRA6 dataset. This dataset is created by collecting

data from social media, mostly YouTube, movie

video clips, etc. This dataset is composed of web

videos that are recorded in unconstrained

environments and typically include camera motions,

various lighting conditions, partial occlusion, low-

quality frames, etc.
3.1.2Action classes

PSRA6 dataset includes total 6 human action classes

named as follows:

1. Fighting (human-human interaction)

2. Gun firing (human-object interaction)

3. Crawling (human activity)

Rukhsarbano S. Sheikh et al.

44

4. Wall climbing (human-object interaction)

5. Falling of human (human activity)

6. Walking with dog (human-animal interaction)

Table 2 summarizes the characteristics of the PSRA6

dataset, like frame rate (number of frames per video),

number of actions, clip length, resolution, and

number of clips per class. The number of clips in

each action class is shown in Table 3, which is almost

500 in each class. 500 clips of one action are divided

into 25 groups. Each group contains 19–21 clips.

Clips from the same group share some common

features, such as the background, actors, camera

motions, various lighting conditions, partial

occlusion, low-quality frames, dense situations,

viewing angle variations etc.

Table 2 Summary of characteristics of PSRA6

dataset

Characteristic Details

Actions 6

Total videos clip 3000

Average clips per class ~500

Mean clip length 3 sec

Minimum clip length 1 sec

Maximum clip length 5 sec

Frame rate 30 fps

Resolution 720 x 430

Table 3 Number of clips in each class of PSRA6

dataset

Action classes Number of clips per class

Fighting 502

Gun firing 495

Crawling 499

Wall climbing 503

Falling of human 500

Walking with dog 507

The dataset is visualised in Python using the

Matplotlib library. Figure 3 shows sample frames for

action classes from PSRA6. The bar chart in Figure 4

shows the number of clips in each class, which is

approximately 500. Almost all clips have a fixed

frame rate of 30 fps and a resolution of 720 × 432.

The videos are saved in MP4 file format. After

dataset creation the next task is of data visualization

and data preparation for training and testing. To fulfil

this task, data sampling and data distribution

techniques are used. Data sampling is the technique

of statistical analysis used to select, manipulate, and

analyse the patterns and trends of data points in large

dataset. There are different types of data sampling

like random, stratified, cluster and multistage. In the

proposed work random sampling is selected for data

visualization (as shown in Figure 3) and data

preparation for training and testing. There is a

provision of random python library to incorporate

these techniques and the same is used on PSRA6

dataset. It helps to visualize random sample of data

frames, from all 3000 videos of six action classes,

every time when we visualize the data. Also, in

feature selection process it extracts the features of

random choice frames to reduce the sparsity in

features which has been used for training and testing

of model. In testing, it takes average probability of

random choice frames and then make more accurate

prediction. Let‟s consider that a video of 5 seconds

contains 40 frames and sequence length is set as 20.

Then 40÷20 gives 2, so every second frame of video

sequence is taken into consideration for feature

extraction to train the model and to test the model.

After random data sampling, data distribution is the

next step after features extraction. The random

library offers methods that returns randomly

generated data distributions. A random distribution is

a set of random numbers that follow a certain

probability density function while prediction. We can

generate random frames based on defined

probabilities using the choice () method of the

random module. The choice () method allows us to

specify the probability for each class in the dataset.

This helps in splitting or dividing of dataset into train

and test set using scikit learn library. Thus, this

section entirely focused on the crucial methods used

to prepare data for training and testing after a dataset

has been generated.
3.1.3Steps to create adapted PSRA6 dataset

To make the PSRA6 dataset for an activity

recognition model at a border site for surveillance

purposes, the steps followed are shown in Figure 5.

As our dataset is raw video dataset without labels, the

data collection in our case is done manually in

stepwise manner. It was saved in a directory, names

as, „DATASET‟ with sub folders of particular action

as shown in Figure 5. There is no automated

algorithm involved in dataset creation.

Steps to follow in creation of dataset:

1. Search on the YouTube website by specifying a

set of keywords related to selected human action

classes (e.g., human fight, gun firing at a border

site, crawling activity of humans, etc.) and obtain

a list of uniform resource locators (URLs).

2. Visit the SavefromNet website and download

videos from the URLs obtained in Step 1.

3. Many of the raw videos obtained in step 2 are to

be cut into clips of 2 to 5 seconds duration. It

employs a trim.py python OpenCV code to make

these short clips from the downloaded videos.

International Journal of Advanced Technology and Engineering Exploration, Vol 10(98)

45

The clip time interval is supplied to the OpenCV

code in the form of a time text file.

4. Check each video for suitability for the desired

application. Remove manually the irrelevant

videos and shots that contain unrealistic and non-

monitoring scenes. Delete the noisy clips.

5. Perform data augmentation on clips to increase

the number of clips in the dataset from different

angles of video frames using data augmentation

Python code.

6. Convert each video file to MP4 format to ensure

that dataset clips are consistent using the

VideoLAN Client (VLC) media application.

7. Update the dataset with relevant clips.

For this PSRA6 dataset, a total of 3000 video clips

were extracted from around 800 raw web videos.

This PSRA6 dataset is used for training of three deep

learning models (CONVLSTM, LRCN, and 2-layer

CNN) by giving 80% of the data for training and

20% for testing. Then, according to performance

metrics, out of the three models one best model is to

be selected. The selected best performing trained

model is to be further used for testing of new videos

of human action other than the PSRA6 dataset using

a desktop setup providing live video data feed and

then implement this system for real-time testing.

Most available action recognition datasets are not

realistic and have been staged by actors. The primary

goal of this adapted PSRA6 dataset is to provide the

computer vision community with an action

recognition dataset comprised of realistic videos

taken from YouTube.

Figure 3 Sample frames for action classes from PSRA6 (Dataset Link: https://github.com/RukhsarSheikh/PSRA6-

dataset/blob/main/onedrive%20link%20of%20dataset)

Rukhsarbano S. Sheikh et al.

46

Figure 4 Number of clips per action class

Figure 5 Flowchart of data collection

3.2Deep learning model selection

Pre-trained models are not advised for this study

since they perform poorly due to poor accuracy for

datasets with few class instances. Two criteria were

used to choose the deep learning models for this

work. The model needs to be built from scratch and

must be based on the CNN architecture. To determine

the optimal model based on training and testing with

PSRA6 dataset, the three deep learning models

chosen were CONVLSTM, LRCN, and 2-layer CNN.

The LSTM network type known as CONVLSTM

uses convolutional processes. By taking the temporal

relationship into consideration, it can identify the

spatial features of the input data. The LRCN is a

hybrid network that combines LSTM and

convolutional layers. Here, the spatial features of the

images are extracted using the CNN layer before

being transferred to the LSTM layer for temporal

sequencing modelling. 2-layer CNN has a simple

two-layer CNN architecture. This model is being

applied here as a video classifier. Then according to

performance metrics, out of three models the best

model is to be selected.

For proposed PSRA6 dataset these three deep

learning models are selected because they can be

built from scratch for custom dataset. Changes can be

made in the source code of models as per

requirements. There is no need of data annotation

because in the source code of the model only a

function creates annotated dataset for feature

extraction. It saves the time of data annotations. One

more reason for selection of these three deep learning

models is, they can be trained with raw videos.
3.2.1Model summary

After dataset creation, the next step is model creation.

In this work, three deep learning models are built

from scratch using the Keras python library. Python

has a deep learning library called Keras that is

powerful but easy-to-use. The Keras python library is

used in the coding of all three deep learning models

(CONVLSTM, LRCN, and 2-layer CNN). This

International Journal of Advanced Technology and Engineering Exploration, Vol 10(98)

47

library has provision to print model summaries in the

text format. This model summary gives all

information about the number of layers, order of the

layers, output shape in each layer, number of

parameters in each layer, and total number of

parameters in the model.

After defining the function for 2-layer CNN model,

the summary of the model is obtained using the

"model.Summary()" command. The summary result

of 2-layer CNN model is described here. In each

video classification problem, videos are converted

into several frames. After conversion, each frame is

passed as an input image of an assumed shape (64,

64, 3) to the 2-layer CNN model for training. The

calculation of height, width and number of

parameters of a convolutional layer is carried out by

referring the Equation 1, Equation 2 and Equation 3

respectively.

The source code used here first converts videos into a

series of frames. Then, by using the feature extraction

function, the features and labels of dataset are

created. These features are in the form of feature

maps. These feature maps are used to train the

selected deep learning models. The height and width

of these feature maps are converted according to each

layer of CNN models. Here, Equation 1 is used to

calculate the output height () with known value of

input height (), padding value (), striding value

() and kernel height () of the feature maps.

Similarly, Equation 2 is used to calculate the output

width () with known value of input width (),

padding value, striding value and kernel width ()

of the feature maps. Also, by passing feature maps in

each layer of the CNN model, it calculates the

number of parameters using Equation 3, which is

multiplication of four terms of each layer in the

network i.e., kernel height, kernel width, input

channel () and output channel (In this some

are trainable parameters, and some are not. In Keras,

there are non-trainable parameters (as shown in the

model.summary() in Figure 6) means the number of

weights that are not updated during training with

back propagation, and trainable parameters are the

number of weights that are updated during training;

they are also called learnable parameters as shown in

below Equation 1 to Equation 3.

 [

] (1)

 [

] (2)

 (3)

Where,

 = Output height; = Output width; = Input

height; = Input width; = Kernel height; =

Kernel width; = Padding; = Stride; = Output

channel; = Input channel

In this section, each layer of the model's architecture

is explained in detail. The input image size is

assumed to be (64, 64, 3), i.e. image_width (),

image_height (), and number of channels (). The

Keras python library adds an extra dimension to

process the multiple batches, i.e. the multiple images

are trained at every step of every single epoch. Batch

size is a variable quantity, so in place of batch size, a

„None‟ value is added, as shown in Figure 6. Now

the input image shape is changed and represented by

four parameters (None, 64, 64, 3).

In the first layer, Conv2D, convolution operation is

performed on the input image with a kernel size (3, 3)

with stride 1 and „valid‟ padding. Output shape (Oh1,

Ow1) is calculated using Equation 1 and Equation 2

that results in (64-3+1, 64-3+1) = (62,62). Number of

such filters is 64 then the output becomes (62, 62,

64). The number of parameters in first layer can be

calculated using Equation 3 that results in

(3×3×3×64) + 64 = 1792.

In the second layer, Conv2D_1, convolution

operation is performed on the output size of the first

layer. Output shape (Oh2, Ow2) is calculated using

Equation 1 and Equation 2 that results in (62-3+1,

62-3+1) = (60, 60). Number of such filters is 64 then

the output becomes (60, 60, 64). The number of

parameters in second layer can be calculated using

Equation 3 that results in (3×3×64×64) + 64=36,928.

Third layer is batch normalization. In this, input size

is same as output size i.e. (60, 60, 64) and number of

parameters are calculated by different method i.e.,

batch normalization layer always has 4 parameters so

number of parameters in third layer can be calculated

as (64×4) =256.

Fourth layer is the maxpooling2d layer. In this layer,

the output size is calculated always by applying (2, 2)

pixels and strides value 2. Output shape (Oh4, Ow4)

is calculated using Equation 1 and Equation 2 that

results in (((60-2) ÷2) +1, ((60-2)÷2) +1) = (30, 30)

and number of such filters is 64 then the output shape

becomes (30, 30, 64). In this layer no parameters are

updated.

Fifth layer is the global average pooling layer. It will

transform the dimension from (None, 30, 30, 64) to

Rukhsarbano S. Sheikh et al.

48

(None, 1, 1, 64) or (None, 64) like fully connected

layers. Also, it reduces the tendency of overfitting,

and no parameters are updated.

Sixth layer is a dense layer which contains rectified

linear unit (ReLU) activation function. It receives the

input from all neurons and gives classification results

after dimension reduction. The input channel number

is 256 then the number of parameters is calculated as

(64+1)×256 = 16,640.

Seventh layer is batch normalization_1. In this input

size is same as output size i.e. (None, 256) and

number of parameters are calculated by different

methods i.e., batch normalization layer always has 4

parameters so number of parameters in third layer

can be calculated as (256×4) = 1,024.

Eighth layer (last layer) is dense layer_1. This layer

contains smooth approximation to the arguments of

the maxima (SoftMax) activation function. It receives

the input from all neurons, and it gives classification

results after dimension reduction. The input channel

number is 6 as an example of number of action class

(models first trained on number of action classes for

experiment purpose) then the number of parameters

is calculated as (256+1)×6 =1,542. Total parameter is

the sum of parameters obtained in each layer of the

network. Total parameter=1,792 +36,928 +256+

16,640 +1,024+1,542=58,182

In the batch normalization layer half parameters are

trainable and half are non-trainable i.e., the third and

seventh layer of the model is batch normalization

layer, so in the third layer out of 256 parameters 128

are trainable and 128 are non-trainable. Similarly in

seventh layer out of 1024 parameters 512 are

trainable and 512 are non-trainable.

Trainable parameter is the sum of learnable

parameters obtained in each layer of the network.

Trainable parameter = 1,792 +36,928 +128+16,640+

512+1,542=57,542 and non-trainable parameter is the

sum of parameter obtained in batch normalization

layer. Non-trainable parameter=128+512=640.

Figure 6 Comparison between three deep learning model summaries

International Journal of Advanced Technology and Engineering Exploration, Vol 10(98)

49

3.2.2Visualization of model

A model summary is useful for understanding simple

deep learning models but confusing for complex deep

learning models. Because of the multiple input and

output layers in complex deep learning models, the

Keras python library also provides a model plot

function that plots the network of deep learning

models. These plots are easy to understand. It uses

the plot_model() function to print the network of

deep learning models. The pre-requisite to print the

model plot is the graphviz library, and the python

interface should be installed already. It is always a

good practise to create a model summary and model

plot for any neural network. It confirms the total

number of layers, the order of layers, the input and

output shapes of each layer, and the parameters. The

model plot is nothing but a model summary block

diagram for better understanding of model layers and

structure. Because model creation is the most

important part of the whole source code, which is

created by using the Keras python library, in this

section, we visualise our model; in the next section,

we look at the whole working flow of source code,

which is written in the python language in Ubuntu.

Figure 7 shows the comparison between three deep

learning model plots. Figures 6 and Figure 7 shows

that the 2-layer CNN model is less complex and easy

to understand due to its smaller number of layers than

the other two models, CONVLSTM and LRCN.

Figure 7 Comparison between three deep learning model plots

Rukhsarbano S. Sheikh et al.

50

3.2.3Model architecture

The deep learning model architecture provides

operational parameters for a neural network, such as

the number, size, and type of layers. Models are a

component of your architecture, a specific instance

that trains on a specific set of data. The functional

unit of deep learning is neural networks, which are

known for solving complex data-driven problems by

mimicking the behaviour of the human brain. To

produce the desired output, the input data is

processed through various layers of artificial neurons

stacked together. Figure 8 shows the three different

convolutional architectures: CONVLSTM, LRCN,

and 2-layer CNN. The proposed work introduces a

PSRA6 dataset with three convolution-based deep

learning models. All models have a similar flow of

operations like input video, processing input frames,

feature learning using a CNN (spatial-temporal

feature extraction), classification, and prediction

using a dense layer (flatten and SoftMax). The

CONVLSTM model architecture is made with

CONVLSTM cells, a variant of the LSTM network

that involves convolution operations. LRCN models

combine CNN and LSTM layers in a single model.

The CNN model is good for feature learning and

classification, while LSTM models are good for the

sequence of data. These two models are quite

complex and good for video captioning problems

where each frame in a sequence is captioned with a

different word. In our case, we are simply

recognising the action, so a simple 2-layer CNN

model outperforms the other two models in terms of

training and testing accuracy with the PSRA6 dataset.

a.CONVLSTM model

b.LRCN model

International Journal of Advanced Technology and Engineering Exploration, Vol 10(98)

51

c.2-layer CNN model

Figure 8 Model architecture, a. CONVLSTM model, b. LRCN model, and c. 2-layer CNN model

3.3 Working procedure

In this section, the working procedure of the entire

source code of this project pertaining to architecture

of proposed system as shown in Figure 2 is described

by referring to Figure 9. This code is mainly divided

into four parts, such as data pre-processing, model

creation, model training, and model testing. This

source code is written in python and installed on the

Ubuntu operating system by installing various

required python packages.

Figure 9 Flowchart of working procedure pertaining to architecture of proposed system

Rukhsarbano S. Sheikh et al.

52

3.3.1 Data pre-processing

This section describes the complete process of data

preprocessing step by step:

1. Visualize the data with labels: In this step, display

some random videos from each class of the

dataset. This will give us a good idea of how the

dataset looks.

2. Read and pre-process the dataset: In this step,

create a function that will extract frames from each

video while also performing pre-processing

operations such as image resizing and

normalization. This method takes a video file path

as input. The programme then reads the video file

frame by frame, resizes each frame, normalizes the

resized frame, appends the normalized frame to a

list, and finally returns the list. The process of

removing noise from a signal is known as noise

removal. The addition of noise will result in

information loss. Noise can be caused by a variety

of factors, including photographing in low-light

conditions. Each type of noise requires a different

filter. As a result, identifying the type of noise in

an image is the first step in denoising it with

traditional filters. After determining this, proceed

to apply the specific filter. In this project,

convolutional neural networks are effective at

removing noise from images.

3. Dataset creation (features and labels): In this step,

create a new function called create dataset (),

which employs the frame extraction () function to

generate the final pre-processed dataset. The most

relevant features from the data are chosen using

feature selection. Higher predictive accuracy and a

lower computational load for the classification

system can be achieved by selecting only the

relevant features of the data.

This function works as follows:

a. Iterate through all the classes mentioned in the

classes list, which are the PSRA6 dataset's six

action classes.

b. Iterate through all the video files in each class

now.

c. On each video file, use the frame extraction

method.

d. Add the frames that were returned to a list called

"temp features”.

e. After all videos in a class have been processed,

select video frames at random (equal to max

images per class) and add them to the features list.

f. Add labels to the "labels" list for the selected

videos.

g. Return the features and labels as NumPy arrays

once all videos from all classes have been

processed.

h. When this function is called, it will return two

lists: a list of feature vectors and the labels

associated with them.

i. Now use the one-hot encoding method to convert

class labels to one-hot encoded vectors.

4. Split dataset into train and test set: In this step, two

NumPy arrays one with all features and one with

only labels are divided in the ratio 0.8 to train the

model and 0.2 to evaluate the model. The data

need to be shuffled before splitting it, which was

already done. The train-test split is used to

estimate the performance of machine learning

algorithms suitable for prediction-based

algorithms. This method is a quick and simple

procedure that allows one to compare one‟s own

machine learning model‟s results to machine

results from the dataset.
3.3.2Construct the model

This section describes complete process of model

construction. In this work, authors developed a

simple CNN classification model with two CNN

layers.

1. A function to build the model

2. Model construction with a sequential model

3. Model architecture definition, model architecture

is already described in Section 3.2

4. Print the summary of the models using model.

Summary() function. One model summary is

already explained in section 3.2

5. Use create_model() function to create the model

6. Plot the model. Section 3.2.2 describes how to plot

the model using the plot_model() function
3.3.3Training of model

Following the creation of the dataset and the

selection of the deep learning model (2-layer CNN),

the model is trained on the PSRA6 dataset for enough

epochs. After training to classify six activities from

the PSRA6 dataset, a weight file (.h5 file) is

generated, and the model is tested by taking camera

video as input, predicting activity in the video, and

producing a labelled activity video and an activity

label text file as outputs as shown in Figure 10.

Before training the model, there is need to set some

training parameters and hyperparameters as per the

required framework, and are listed in Table 4 for

authors‟ case. The configuration model's parameters

are internal to the model.

International Journal of Advanced Technology and Engineering Exploration, Vol 10(98)

53

Hyperparameters are parameters that are explicitly

specified to control the training process. Predictions

require the use of parameters e.g., the number of

layers, the number of neurons per layer, the number

of training iterations etc. Hyperparameters are

required for model optimization e.g., learning rate,

number of epochs, train-test split, optimizer,

activation function and batch size etc. These

parameters are decided based on deep learning

models and dataset to optimize the performance of

deep learning models.

Table 4 Training parameters values

Figure 10 Training flowchart

3.3.4Testing of model

After creation of the dataset, selection of a deep

learning model (2-layer CNN) and training of the

model, the next step is to test the model on new input

videos. The testing of the model on new input videos

is carried out using a weight file or model.h5 file.

From the input file, the model has to classify it into

any of the six activities from the PSRA6 dataset,

predict activity in the video, and give output as a

labelled video and a class label text file.

For testing, a function is created of prediction using a

moving average on live videos, and the window_size

(K) parameter is set as 25 for an average prediction

of 25 frames of live videos. Figure 11 shows the

overall testing flowchart of the system. For testing,

two types of hardware setups were used: first,

desktop testing as shown in Figure 12 to check the

model's performance, and second, real-time testing as

shown in Figure 13. For real-time application setup

the stages are: 1. the source code is deployed in

Jetson Nano microcontroller, 2. receive and test the

real time camera input, 3. show label output video on

the screen with the indication (e.g., Alarm) of

unusual activity that is happening at border site.

The steps of prediction are as follows:

1. Loop through every frame of the video file

2. Pass each frame through CNN model

3. Obtain the forecasts from CNN model

4. Keep track of the previous K predictions

5. Choose the label with the highest corresponding

probability after averaging the last K predictions.

6. Label the frames of output video and print

predicted label as an output

Parameters Models

CONVLSTM LRCN 2-layer CNN

Epochs 100 100 100

Batch Size 4 4 4

Train-test split 0.25 0.25 0.2

Validation split 0.2 0.2 0.2

Patience 10 10 15

Seed Constant 27 27 23

Sequence length 20 20 20

Image height 64 64 64

Image width 64 64 64

Dropout 0.2 0.2 -

Loss Categorical cross entropy Categorical cross entropy Categorical cross entropy

Optimizer Adam Adam Adam

Metrics Accuracy Accuracy Accuracy

Callbacks Early stopping Early stopping Early stopping

Activation function SoftMax, ReLU SoftMax, ReLU SoftMax, ReLU

Total parameters 50,286 73,126 58,182

Trainable Parameters 50,286 73,126 57,542

Non-Trainable Parameters 0 0 640

Rukhsarbano S. Sheikh et al.

54

Figure 11 Testing flowchart

Figure 12 Hardware setup for desktop testing

Figure 13 Hardware setup for real-time testing

3.4Implementation

After finalization of each parameter i.e., dataset, deep

learning model and hyper parameters etc. then for

training and testing of deep learning model through

implementation, the requirements to be fulfilled are

discussed further.
3.4.1 Software requirement

In this study the major part is implementation of

dataset and python code. So, to write the python code

following python environment and libraries are used.

For most of the deep learning system, it is advised to

have minimum 8 gigabyte (GB) of random access

memory (RAM), and the requirement increases as the

model complexity or size of the dataset increases. In

the proposed model maximum training time required

is 10 hours on the used computer machine which had

16 GB of RAM with 11th Generation Intel Core i7

processor and 256 GB of solid-state drive.

1. Ubuntu 20.04 Linux operating system

To install Ubuntu 20.04 in any machine it requires

minimum RAM of 1 GB or more.

2. Python3.4 with all required libraries with latest

version as: a. NumPy, b. Scikit-Learn, c. Pickle, d.

Tensorflow-Keras, e. Matplotlib, f. OpenCv, g.

Moviepy-editor, h. Collections, i. Seaborn.

To install Python3.4 with all required libraries in any

machine it requires minimum RAM of 4 GB or more.

In this proposed system, PSRA6 dataset consumes

3.6 GB of memory size. Also, for training of three

deep learning models it requires around 1GB of

memory size. So minimum memory requirement in

proposed system is 10 GB of RAM.

The flowchart of overall coding part of this system is

already discussed in section 3.3.
3.4.2Hardware requirement

Hardware requirements for training and testing of

deep learning models are as follows:

For training and desktop testing following hardware‟s

are required.

1. Desktop PC

2. NVIDIA GTX-1060 6 GB GPU

3. Webcam

For real time testing following hardware‟s are

required.

1. NVidia Jetson Nano

2. Raspberry camera V2

3. Monitor screen and alarm indication

4.Results
In this section, the performance of the three deep

learning models is evaluated based on classification

metrics such as confusion matrix, accuracy plots, loss

plots, and based on classification report such as

precision, recall, and F1 score. The overall model

accuracy and misclassification rate (or classification

error) is calculated form Equation 4 and Equation 5

respectively. The data from confusion matrix is used

to calculate class-wise precision, recall, and F1 score

by referring Equation 6, Equation 7, and Equation 8

respectively. The confusion matrix is an important

performance metric in machine learning classification

problems. Consider a 2×2 binary classification matrix

with actual values on one axis and predicted values

on the other. In the model, positive and negative are

International Journal of Advanced Technology and Engineering Exploration, Vol 10(98)

55

treated as two classes. So, true positive (TP) denotes

that the model correctly predicts the positive class,

true negative (TN) denotes that the model correctly

predicts the negative class, false positive (FP)

denotes that the model incorrectly predicts the

negative class, and false negative (FN) denotes that

the model incorrectly predicts the positive class.

Accuracy is the measurement of the correct data

predicted by the network model divided by the whole

data. Accuracy can be calculated by using Equation

4. The compliment of accuracy is the

misclassification rate or classification error. It is the

proportion of observations that a classification model

predicted incorrectly. Classification error can be

calculated using Equation 5. Precision denotes the

fraction of correct positive predictions out of the

overall positive predictions. Precision can be

calculated using Equation 6. The part of the total that

is predicted to be positive is referred to as the recall.

Recall can be calculated using Equation 7. The F1

score denotes the harmonic mean of precision and

recall. F1 score can be calculated using Equation 8.

Thus accuracy, classification error, precision, recall

and F1 score can be respectively calculated as shown

in below Equation 4 to Equation 8.

 (4)

 (5)

 (6)

 (7)

 (8)

Table 5 tabulates the network model performance in

terms of accuracy, loss, and training time

(approximate time was recorded while training).

Table 6 shows the precision, recall, and F1 score

values of each class with their micro, macro and

weighted average values for 100 epochs. Figure 14,

Figure 15, and Figure 16 show a graphical

comparison of each network's performance in terms

of accuracy plots, loss plots, and confusion matrices

respectively. The classification report shown in Table

6 is validated with confusion matrix of 100 epochs of

respective model shown in Figure 16. With an

accuracy of 96.77%, loss of 0.21, weighted average

precision of 97%, weighted average recall of 97%,

and weighted average F1 score of 97%., the 2-layer

CNN architecture outperforms all other architectures.

The 2-layer CNN model performs best due to the way

the architecture is designed, which is to limit

computational power.

Table 5 Comparison between three deep learning models using PSRA6 dataset for 50 and 100 epochs
Models Parameters

Training on 50 epochs Training on 100 epochs

Accuracy

(1 – error rate)
(%)

Loss Training Time (hr) Accuracy

(1 – error rate)
(%)

Loss Training Time (hr)

CONVLSTM 72.64 0.76 6 69.09 0.5 10

LRCN 86.32 0.49 5 83.18 0.60 8

2-layer CNN 98.97 0.05 4 96.77 0.21 6

Table 6 Comparison of classification report for three deep learning models using PSRA6 dataset for 100 epochs
Classification report

Model CONVLSTM LRCN 2-layer CNN

Metric Precisi

on

Recall F1-

score

support Precisi

on

Recall F1-

score

support Precisi

on

Recall F1-

score

support

Gun Firing 0.40 0.68 0.50 38 0.78 0.86 0.82 38 0.96 0.98 0.97 1604

Crawling 0.71 0.45 0.55 22 1.00 0.59 0.74 22 0.97 0.98 0.98 1615

Fighting 0.72 0.70 0.71 37 0.87 0.97 0.92 37 0.97 0.91 0.94 1593

Wall Climbing 0.73 0.72 0.72 54 0.80 0.98 0.88 54 0.99 0.97 0.98 1585

Falling of

Human

0.67 0.74 0.70 31 0.68 0.64 0.66 31 0.96 0.96 0.96 1602

Walking with

Dog

0.77 0.36 0.49 38 0.93 0.71 0.80 38 0.95 0.99 0.97 1601

micro avg 0.63 0.63 0.63 220 0.83 0.83 0.83 220 0.97 0.97 0.97 9600

macro avg 0.67 0.61 0.61 220 0.84 0.79 0.80 220 0.96 0.96 0.96 9600

weighted avg 0.67 0.62 0.62 220 0.83 0.82 0.82 220 0.97 0.97 0.97 9600

Rukhsarbano S. Sheikh et al.

56

As a result, running the architecture smoothly is

simplified. The LRCN model is the second-best

performing architecture, with an accuracy of 83.18%,

and loss of 0.60. In their networks, all architectures

use a 3x3 filter. It demonstrates that incorporating the

3x3 filter forces the algorithm to learn features

common to different situations, allowing it to

generalise better. The model can learn more features,

increasing its accuracy. The two layers of CNN, on

the other hand, make it suitable for use on a simple

single-GPU computer because they can accelerate

training time. When compared to the others, the

CONVLSTM model performs poorly, with an

accuracy of 69.09%, and loss of 0.5. This

demonstrates that all the architectures perform with

high accuracy while keeping a reasonable number of

parameters.

The LRCN and CONVLSTM model are hybrid

model in which CNN is incorporated with LSTM in

two different ways. CNN is good to deal with feature

extraction and feature learning. LSTM are good in

dealing with sequence of data. These models are

applicable to many machine learning problems like

activity recognition, image captioning, video

description, visual grounding, and natural language

object retrieval etc. CONVLSTM is better than Fully

Connected-LSTM in handling spatio-temporal

correlations. The LRCN and CONVLSTM models

were observed to be the best, outperforming the

baseline networks [40, 41]. To obtain baseline

performance for the proposed adapted PSRA6

dataset, we built these two-hybrid models and one

simple 2-layer CNN model. Because our problem

statement is only activity recognition, a simple 2-

layer CNN model performed better and achieved

better performance metrics than other models.

Convolution architecture underpins all three models.

It outperforms in image and video data, as well as

machine learning problems. In this paper, we

proposed CNN-based models and compared the

performance metrics obtained with the PSRA6

dataset. The further enhancement can be done in

these models for more complex machine learning

problems. Thus, the paper proposes improved vision-

based HAR via hybrid convolutional networks.

The problem statement of the proposed work is only

activity recognition. In output video, it is required to

display only one label pertaining to the identified

activity, if and only if the identified activity is

belonging to the PSRA6 dataset. The identification of

activity happens by taking average of particular

frames during the time when included activity is

going on. Otherwise, it will not show any label in the

output video.

CONVLSTM and LRCN model are incorporated

with LSTM model. LSTM model is completely

sequence based and it analyses each frame in input

videos. In these models‟ architecture it is taking

average of each frame in the video sequence one by

one. The issue is that the model will not always be

fully confident about prediction, thus the predictions

will change rapidly and fluctuate. So, while testing of

these models with new data, it was observed that

there is more flickering of label in the output video.

2-layer CNN model is not sequencing based model

and with implementation of moving average

approach of testing, 2-layer CNN model predicted

more accurately with less flickering of label in the

output video compared to CONVLSTM and LRCN

models. For example, two people are fighting in an

input video and the video contains 10 frames such

that each frame is with different pose. Let's say that

frame sequence is: 1-standing, 2-fighting, 3-falling,

4-standing, 5-fighting, 6-fighting, 7-fighting, 8-

falling, 9-standing, 10-fighting. Let's say that the

sequence length is 5. Then 10/5 is 2. So, for all

models, every second frame is taken into

consideration (i.e., frame 2,4,6,8, and 10) while

prediction of activity label. But, in 2-layer CNN

model architecture, it will take average of probability

of identified actions from the selected frames. As per

observation there is higher probability of fighting

action. Hence 2-layer CNN model predicts the

activity as fighting and thereby label the same in the

output video. While in CONVLSTM and LRCN

model due to sequence based learning and due to

taking past frame output as input for prediction it

keeps fluctuating between falling and fighting action

class.

During training, the loss and accuracy plots are two

of the most common plots used to debug a neural

network. It provides a snapshot of the training

process and the learning direction of the network.

The network is trained in two batches, first with 50

epochs and second with 100 epochs. Because our

dataset is large, we train half of it in 50 epochs and

the other half in the following 50 epochs, for a total

of 100 epochs, by using the load train model function

on the model that has already been trained on 50

epochs. So, each architecture has two accuracy plots

and two loss plots, one for 50 epochs and another for

100 epochs. Because they were trained with different

data, the plots at 50 and 100 epochs differ.

International Journal of Advanced Technology and Engineering Exploration, Vol 10(98)

57

The accuracy plots for each architecture in the

classification task are shown in Figure 14. Using the

recorded history from model training, we can

generate a plot of accuracy metrics. For plotting,

select the training data accuracy ("acc") and the

validation data accuracy ("val acc"). The difference

in training and validation accuracy is an obvious sign

of overfitting. Greater the gap, more is the

overfitting. If a model has been overtrained on the

data, to the point where it even learns the noise from

it, the model is said to be overfit. An overfit model

misclassifies a previously unknown or new example

because it learns every sample very precisely. For an

overfit model, almost perfect training curve is

obtained, but a bad validation curve. Use of a

complicated model, for a simple problem, that

captures data uncertainty is one of the causes of

overfitting. Additionally, choose modest datasets

because the training set might not accurately reflect

the entire universe. In the proposed work,

CONVLSTM and LRCN model are complex one, so

they are dealing with overfitting problem more as

compared to 2-layer CNN model. The solutions to the

overfitting problem is obtained by: lowering the

number of elements in the layers or deleting layers to

reduce network capacity; applying regularisation,

which essentially includes the cost to the loss

function for heavy weights; using dropout layers,

which randomly erase specific features by setting

them to zero. In this proposed work only first,

solution is implemented by reducing the network

capacity in third model i.e., 2-layer CNN model.

Implementation of other two solutions and

comparative analysis of all three offers future scope

in this kind of work.

50 epochs 100 epochs

a. CONVLSTM model

50 epochs 100 epochs

b. LRCN model

Rukhsarbano S. Sheikh et al.

58

50 epochs 100 epochs

c. 2-layer CNN model

Figure 14 Comparison of „accuracy plots‟ of three deep learning models: results for 50 epochs and 100 epochs, a.

CONVLSTM model, b. LRCN model, and c. 2-layer CNN model

The loss plots for each architecture in the

classification task are shown in Figure 15. To obtain

a plot of loss metrics, use the recorded history during

model training. The loss metric in this case is

categorical cross-entropy. For plotting, select the

training data loss ("loss") and the validation data loss

("Val loss"). The loss function is calculated across all

data items during an epoch and is guaranteed to give

a quantitative loss measure at the given epoch.

However, plotting the curve over iterations only

yields the loss for a subset of the total dataset.

Plotting validation loss alongside training loss

provides more information.

50 epochs 100 epochs

a. CONVLSTM model

50 epochs 100 epochs

 b. LRCN model

International Journal of Advanced Technology and Engineering Exploration, Vol 10(98)

59

50 epochs 100 epochs

c. 2-layer CNN model

Figure 15 Comparison of „loss plots‟ of three deep learning models: results for 50 epochs and 100 epochs, a.

CONVLSTM model, b. LRCN model, and c. 2-layer CNN model

The confusion matrix for each architecture in the

classification task is shown in Figure 16 (a, b, c). The

confusion matrix is used to distinguish correctly

labelled data from incorrectly labelled data for their

respective classes. As dataset is split into 80%

training data and 20% testing data, the testing data is

used to evaluate the confusion matrix.

 50 epochs 100 epochs

 a. CONVLSTM model

 50 epochs 100 epochs

 b. LRCN model

Rukhsarbano S. Sheikh et al.

60

50 epochs 100 epochs

 c. 2-layer CNN model

Figure 16 Comparison of „confusion matrix‟ of three Deep Learning Models: Results for 50 epochs and 100 epochs,

a. CONVLSTM model, b. LRCN model, and c. 2-layer CNN model

Table 7 and Table 8 shows the summary of the

confusion matrix by referring the Figure 16 (a, b, c)

for 50 and 100 epochs for all the three models. In

this, total sample for testing is sum of all elements in

confusion matrix. Correct prediction is sum of all

diagonal elements in confusion matrix. Incorrect

prediction is sum of non-diagonal elements in

confusion matrix. Prediction rate is the ratio of

number of correct prediction sample and number of

total samples for testing. It means trained model

identifies independent samples that were not used in

training. The first two models are tested directly on

the number of videos (collection of frames), whereas

the third model is tested on the number of

frames. Each video contains 20-30 frames. The

summary of confusion matrix results show that the 2-

layer CNN model performed better than the other two

because the ratio of correct predictions is higher in

this model.

Table 7 Summary of confusion matrix for 50 epochs

Models Total sample for

testing

Correct prediction Incorrect prediction

CONVLSTM 117 85 32

LRCN 117 99 18

2-layer CNN 9594 8998 596

Table 8 Summary of confusion matrix for 100 epochs

Models Total sample for

testing

Correct prediction Incorrect prediction

CONVLSTM 220 138 82

LRCN 220 172 48

2-layer CNN 9600 9317 283

After training a classification model, there may be

instances where the model's output completely or

mostly belongs to one class, indicating that the model

is biased. This is primarily due to an imbalanced

dataset. Data resampling can be used because the

model's accuracy has decreased. Samples are to be

drawn from training data repeatedly and a model of

interest can be fit to each sample to obtain additional

information about the fitted model and to evaluate the

performance of models on new data in data

resampling. To further improve the result, the noise

removal process can be used to make a filter dataset

for training and obtain a good result by using

different techniques like BF or different filters, etc.

5.Discussion

The work presented here introduces a human action

video dataset of six human action classes named the

PSRA6 dataset. To check the performance of a deep

learning model on this dataset, the authors have

selected three models (CONVLSTM, LRCN, and 2-

layer CNN). After model selection, the steps taken

International Journal of Advanced Technology and Engineering Exploration, Vol 10(98)

61

further are: 1. train the chosen models in two batches

of 50 and 100 epochs each to obtain performance

metrics (accuracy, loss, precision, recall, and F1

score), and 2. Identifying, by looking at the

performance metrics results, which model is best for

the PSRA6 dataset out of the three models. With an

accuracy of 96.77%, loss of 0.21, weighted average

precision of 97%, weighted average recall of 97%,

and weighted average F1 score of 97%, the 2-layer

CNN architecture outperforms all other architectures.

The 2-layer CNN model performs the best due to the

way the architecture is designed, which is to limit

computational power. As a result, running the

architecture smoothly is simplified. Figure 17 and

Figure 18 shows screenshot of the prediction result

of 2-layer CNN model, in terms of labelled video

output and text label on screen. As it is concluded

that the 2-layer CNN model is performed better than

other two, the outperformed model is used for testing

new input and its correct average prediction rate is

96.77%.

Figure 17 Dataset test output videos

Figure 18 Real time test output

5.1Major findings

Proposed PSR6 dataset is new video dataset of

3000 video clips and 6 action classes.

The proposed work introduces a new video dataset

named as PSRA6 which contains 6 activities related

to border site such as fighting, firing, crawling,

walking with dog, falling of human and wall

climbing. It comprises total 3000 video clips. Each

action class contain almost 500 videos of 2-5 seconds

video length. Also, this dataset is not labelled but just

a folder containing videos of chosen action classes.

All these videos are collected from social website,

YouTube. The dataset building process is completely

manual there is no automation.

2-layer CNN model achieves highest accuracy

96.77% than other two models.

Rukhsarbano S. Sheikh et al.

62

Accuracy is one of the important parameters of

performance measures of any deep learning model.

The proposed work highlights that the 2-layer CNN

model achieves high accuracy than other two models,

CONVLSTM and LRCN. There are several factors

which affect the accuracy of model such as hyper

parameter tuning (batch size, learning rate, model

capacity etc.), data redesigning (adding more

resolution, randomness in data etc.), model

optimization etc.

2-layer CNN model achieves less loss 0.21 than

other two models.

Model loss is another performance parameters.

Generally, it is considered that model with less loss

performs better. The proposed work highlights that 2-

layer CNN model achieves less loss value compared

to other two models, CONVLSTM and LRCN. There

are several factors which will affect the loss values

such as use of large dataset for training, use of data

augmentation while dataset preparation and hyper

parameters tuning etc.

2-layer CNN model achieves highest weighted

average precision 97% than other two models.

Precision is the model ability to make correct

prediction. The proposed work highlights that 2-layer

CNN model achieves high precision value than other

two models, CONVLSTM and LRCN. The precision

value can be improved by increasing the dataset size,

decreasing learning rate, randomizing the data for

training and testing, and by improving the network

architecture etc.

2-layer CNN model achieves highest weighted

average recall 97% than other two models.

Recall is the ability of a model to identify all positive

samples in a data set. Models must have high recall

when making predictions that are output sensitive.

The proposed work highlights that 2-layer CNN

model achieves high recall value than other two

models, CONVLSTM and LRCN. If it's a neural

network, choose a loss function that is responsive to

changes and doesn't round the input down

unnecessarily. The threshold value set to the last

layer of neural network is essential factor to improve

recall value.

2-layer CNN model achieves highest weighted

average F1 Score 97% than other two models.

A machine learning evaluation statistic called the F1

score assesses the accuracy of a model. The proposed

work highlights that 2-layer CNN model achieves

high F1 score value than other two models,

CONVLSTM and LRCN. The F1 score value can be

improved by improving dataset i.e., by using

balanced dataset, data normalization and

standardization etc.

5.2Limitations

Following points highlight some limitations of the

current work and attempts to overcome the same

could be treated as future scope to yield better

performance.

1. Mostly high-quality videos are used in this work to

create PSRA6 dataset except few of low-quality

intentionally. As a result, the model trained with

this PSRA6 dataset accurately predicts high-

quality input videos but predicts low-quality input

videos less accurately. This could be overcome

through one or more of the ways such as adding

more data, adding more layers in the deep learning

models, changing image size, increasing the

epochs, decreasing colour channels, implementing

transfer learning, tuning the various hyper

parameters and functions involved in the model,

such as the learning rate, activation functions, loss

functions, and so on.

2. It does not label input videos of activities other

than the six classes that are included in PSRA6

dataset, but it does fluctuate between any two

classes due to some similarity in the actions e.g.,

video recorded with certain angles of about 45
0
 if

given as input the output response fluctuates

between crawling and wall climbing. This could be

due to the actual angular position variation of 90
0

between crawling and wall climbing. However, the

important point is that it recognises such human

activity as a part of PSRA6 and does not put aside

without label.

3. In this work, simple CNN models have been

implemented which work directly on the raw data

as in this case. To improve further, the training

data can be filtered using noise removal and

background subtraction techniques.

A complete list of abbreviations is shown in

Appendix I. This Appendix II provides details of

sample calculations behind classification report

(Table 6) for gun firing class with reference to the

confusion matrix of 2-layer CNN model for 100

epochs (Figure 16 (c) 100 epochs). Classification

report calculation for 2-layer CNN model for 100

epochs is shown in Appendix III.

6.Conclusion
This paper introduces PSRA6, a new human action

video dataset with six human action classes. The

dataset contains almost 3000 video clips with

approximately 500 video clips per class. Each video

clip is of 2-5 seconds duration. The activities

included are pertaining to suspicious human activity

through HAR for timely prevention of any kind of

International Journal of Advanced Technology and Engineering Exploration, Vol 10(98)

63

attack or intrusion at CIS. The procedure of dataset

generation and model construction is presented in

detail. The models are trained and tested with PSRA6

dataset to obtain different performance metrics. The

performance analysis, of three deep learning models

(CONVLSTM, LRCN, and 2-layer CNN) which are

built from scratch with the PSRA6 dataset, is

discussed in this paper. According to less complexity

of model and requirement of less computational

power, the 2-layer CNN model is the best amongst

the three models. With an accuracy of 96.77%, loss

of 0.21, weighted average precision of 97%,

weighted average recall of 97%, and weighted

average F1 score of 97%, the 2-layer CNN

architecture outperformed all other architectures

(CONVLSTM and LRCN). For the application under

consideration i.e., perimeter border site surveillance

at CIS, a PSRA6 dataset and a 2-layer CNN model

has been recommended. The 2-layer CNN model is

tested with desktop testing setup on new input video

and the output obtained is in terms of labelled activity

video and class label text file. The real time hardware

set up required for real time monitoring i.e.,

perimeter border site surveillance, is also discussed.

Points mentioned in section 5.2 highlight some

limitations of the current work and attempts to

overcome the same could be treated as future scope

to yield better performance.

Deep learning models with additional layers,

filtration of the training data using noise removal and

background subtraction techniques, tuning the

various hyper parameters and functions involved in

the model, such as the learning rate, activation

functions, loss functions can be taken up as future

scope to check for possibility of improvement in

model performance. The current dataset can be

enhanced by increasing the number of action classes.

Acknowledgment
The first author of this article (RSS) has received Post

Graduate GATE (Graduate Aptitude Test in Engineering)

Scholarship from the All-India Council for Technical

Education (AICTE), INDIA. The datasets used and/or

analyzed during the current study are available from the

corresponding author on request.

Conflicts of interest
The authors have no conflicts of interest to declare.

Author’s contribution statement

Rukhsarbano S. Sheikh: Conceptualization, data

acquisition, data collection, data curation, data analysis,

writing original draft, and interpretation of results. Sudhir

Madhav Patil: Conceptualization, study conception,

writing original draft, interpretation of results, supervision,

review, reading proof, and the revision of the whole article.

Maneetkumar R. Dhanvijay: Design, investigation on

challenges, interpretation of results, review, and reading

proof.

References
[1] Goyal A, Anandamurthy SB, Dash P, Acharya S,

Bathla D, Hicks D, et al. Automatic border

surveillance using machine learning in remote video

surveillance systems. In emerging trends in electrical,

communications, and information technologies 2020

(pp. 751-60). Springer, Singapore.

[2] Janiesch C, Zschech P, Heinrich K. Machine learning

and deep learning. Electronic Markets. 2021;

31(3):685-95.

[3] Vrigkas M, Nikou C, Kakadiaris IA. A review of

human activity recognition methods. Frontiers in

Robotics and AI. 2015; 2:1-28.

[4] Jegham I, Khalifa AB, Alouani I, Mahjoub MA.

Vision-based human action recognition: an overview

and real world challenges. Forensic Science

International: Digital Investigation. 2020; 32:1-14.

[5] Reddy KK, Shah M. Recognizing 50 human action

categories of web videos. Machine Vision and

Applications. 2013; 24(5):971-81.

[6] Soomro K, Zamir AR, Shah M. UCF101: a dataset of

101 human actions classes from videos in the wild.

Center for Research in Computer Vision, University of

Central Florida. 2012: 1-8.

[7] Kuehne H, Jhuang H, Garrote E, Poggio T, Serre T.

HMDB: a large video database for human motion

recognition. In international conference on computer

vision 2011 (pp. 2556-63). IEEE.

[8] Schuldt C, Laptev I, Caputo B. Recognizing human

actions: a local SVM approach. In proceedings of the

17th international conference on pattern recognition

2004 (pp. 32-6). IEEE.

[9] https://academictorrents.com/details/184d11318372f7

0018cf9a72ef867e2fb9ce1d26. Accessed 12 March

2022.

[10] Li A, Thotakuri M, Ross DA, Carreira J, Vostrikov A,

Zisserman A. The ava-kinetics localized human

actions video dataset. Computing Research

Repository. 2020; 5(7):1-8.

[11] Cheng M, Cai K, Li M. RWF-2000: an open large

scale video database for violence detection. In 25th

international conference on pattern recognition 2021

(pp. 4183-90). IEEE.

https://academictorrents.com/details/184d11318372f70018cf9a72ef867e2fb9ce1d26
https://academictorrents.com/details/184d11318372f70018cf9a72ef867e2fb9ce1d26

Rukhsarbano S. Sheikh et al.

64

[12] Barekatain M, Martí M, Shih HF, Murray S,

Nakayama K, Matsuo Y, et al. Okutama-action: an

aerial view video dataset for concurrent human action

detection. In proceedings of the conference on

computer vision and pattern recognition workshops

2017 (pp. 28-35). IEEE.

[13] Singh S, Velastin SA, Ragheb H. Muhavi: a

multicamera human action video dataset for the

evaluation of action recognition methods. In

international conference on advanced video and signal

based surveillance 2010 (pp. 48-55). IEEE.

[14] Demir U, Rawat YS, Shah M. Tinyvirat: low-

resolution video action recognition. In 25th

international conference on pattern recognition 2021

(pp. 7387-94). IEEE.

[15] Ranganarayana K, Rao GV. Action recognition in low

resolution videos using FO-SVM. Indian Journal of

Computer Science and Engineering. 2021; 12(4):1149-

62.

[16] Sargano AB, Wang X, Angelov P, Habib Z. Human

action recognition using transfer learning with deep

representations. In international joint conference on

neural networks 2017 (pp. 463-9). IEEE.

[17] Ji S, Xu W, Yang M, Yu K. 3D convolutional neural

networks for human action recognition. IEEE

Transactions on Pattern Analysis and Machine

Intelligence. 2012; 35(1):221-31.

[18] Mutegeki R, Han DS. A CNN-LSTM approach to

human activity recognition. In international

conference on artificial intelligence in information and

communication 2020 (pp. 362-6). IEEE.

[19] Geng C, Song J. Human action recognition based on

convolutional neural networks with a convolutional

auto-encoder. In 5th international conference on

computer sciences and automation engineering 2016

(pp. 933-8). Atlantis Press.

[20] Aggarwal JK, Ryoo MS. Human activity analysis: a

review. ACM Computing Surveys. 2011; 43(3):1-43.

[21] Mustafa T, Dhavale S, Kuber MM. Performance

analysis of inception-v2 and yolov3-based human

activity recognition in videos. SN Computer Science.

2020; 1(3):1-7.

[22] Zeng M, Nguyen LT, Yu B, Mengshoel OJ, Zhu J, Wu

P, et al. Convolutional neural networks for human

activity recognition using mobile sensors. In 6th

international conference on mobile computing,

applications and services 2014 (pp. 197-205). IEEE.

[23] Weinland D, Ronfard R, Boyer E. A survey of vision-

based methods for action representation, segmentation

and recognition. Computer Vision and Image

Understanding. 2011; 115(2):224-41.

[24] Serrano I, Deniz O, Espinosa-aranda JL, Bueno G.

Fight recognition in video using hough forests and 2D

convolutional neural network. IEEE Transactions on

Image Processing. 2018; 27(10):4787-97.

[25] Sharma R, Singh A. An integrated approach towards

efficient image classification using deep CNN with

transfer learning and PCA. Journal: Advances in

Technology Innovation. 2022; 2022(2):105-17.

[26] Krizhevsky A, Sutskever I, Hinton GE. Imagenet

classification with deep convolutional neural

networks. Communications of the ACM. 2017;

60(6):84-90.

[27] Islam SS, Dey EK, Tawhid MN, Hossain BM. A CNN

based approach for garments texture design

classification. Advances in Technology Innovation.

2017; 2(4):119-25.

[28] Rajakumaran S, Dr JS. Improvement in tongue color

image analysis for disease identification using deep

learning based depth wise separable convolution

model [J]. Indian Journal of Computer Science and

Engineering. 2021; 12(1):21-34.

[29] https://machinelearningmastery.com/cnn-models-for-

human-activity-recognition-time-series-classification/.

Accessed 12 March 2022.

[30] Liu J, Luo J, Shah M. Recognizing realistic actions

from videos “in the wild”. In IEEE conference on

computer vision and pattern recognition 2009 (pp.

1996-2003). IEEE.

[31] Ashhar SM, Mokri SS, Abd RAA, Huddin AB,

Zulkarnain N, Azmi NA, et al. Comparison of deep

learning convolutional neural network (CNN)

architectures for CT lung cancer classification.

International Journal of Advanced Technology and

Engineering Exploration. 2021; 8(74):126-34.

[32] Ankalaki S, Thippeswamy MN. A customized 1D-

CNN approach for sensor-based human activity

recognition. International Journal of Advanced

Technology and Engineering Exploration. 2022;

9(87):216-31.

[33] Qin Y, Mo L, Ye J, Du Z. Multi-channel features

fitted 3D CNNs and LSTMs for human activity

recognition. In 10th international conference on

sensing technology 2016 (pp. 1-5). IEEE.

[34] Suresha M, Kuppa S, Raghukumar DS. A study on

deep learning spatiotemporal models and feature

extraction techniques for video understanding.

International Journal of Multimedia Information

Retrieval. 2020; 9(2):81-101.

[35] Uddin MZ, Khaksar W, Torresen J. Human activity

recognition using robust spatiotemporal features and

convolutional neural network. In international

conference on multisensor fusion and integration for

intelligent systems 2017 (pp. 144-9). IEEE.

[36] Beddiar DR, Nini B, Sabokrou M, Hadid A. Vision-

based human activity recognition: a survey.

Multimedia Tools and Applications. 2020;

79(41):30509-55.

[37] Arunnehru J, Chamundeeswari G, Bharathi SP.

Human action recognition using 3D convolutional

neural networks with 3D motion cuboids in

surveillance videos. Procedia Computer Science.

2018; 133:471-7.

[38] Chen H, Mahfuz S, Zulkernine F. Smart phone based

human activity recognition. In international

conference on bioinformatics and biomedicine 2019

(pp. 2525-32). IEEE.

[39] Bilal M, Maqsood M, Mehmood I, Javaid M, Rho S.

An activity recognition framework for overlapping

https://machinelearningmastery.com/cnn-models-for-human-activity-recognition-time-series-classification/
https://machinelearningmastery.com/cnn-models-for-human-activity-recognition-time-series-classification/

International Journal of Advanced Technology and Engineering Exploration, Vol 10(98)

65

activities using transfer learning. In international

conference on computational science and

computational intelligence 2020 (pp. 701-5). IEEE.

[40] Sun Z, Ke Q, Rahmani H, Bennamoun M, Wang G,

Liu J. Human action recognition from various data

modalities: a review. IEEE transactions on pattern

analysis and machine intelligence. 2022: 1-20.

[41] Arif S, Wang J, Ul HT, Fei Z. 3D-CNN-based fused

feature maps with LSTM applied to action

recognition. Future Internet. 2019; 11(2):1-17.

Rukhsarbano S. Sheikh received

Bachelor of Engineering degree in

Electrical Engineering from the

Gondwana University, Maharashtra,

India. She is currently pursuing Master

of Technology in „Artificial

Intelligence and Robotics‟ at College of

Engineering Pune (COEP), An

Autonomous Institute of Government of Maharashtra.

India.

Email: sheikhrs20.mfg@coep.ac.in

Sudhir Madhav Patil received

Bachelor of Engineering degree in

Mechanical Engineering from the North

Maharashtra University, Maharashtra,

India and Master‟s and Ph.D. degree in

Production Engineering from the

Savitribai Phule Pune University

(SPPU), Maharashtra, India. He is

currently working as Associate Professor in the Department

of Manufacturing Engineering and Industrial Management

of College of Engineering Pune (COEP), An autonomous

Institute of Government of Maharashtra, India. He is

Member of The Institution of Engineers (India), Member of

The American Society of Mechanical Engineers (ASME)

and Life Member of Tribology Society of India (LMTSI).

His main research interest includes Mechatronics,

Manufacturing Automation, Robotics and AI, and

Tribology. He has published several research papers and is

also co-inventor for couple of Indian patents.

Email: smp.prod@coep.ac.in, sudhir.smp@gmail.com

Maneetkumar R. Dhanvijay is

working as Associate Professor in the

Department of Manufacturing Engg.

and Industrial Management, College of

Engineering Pune [COEP]. He

completed his Ph.D. in Mechanical

Engineering from College of

Engineering, Pune in 2017 and

Master‟s in Mechanical-Production Engg. from

Government College of Engineering, Karad, Maharashtra

in 2004. He is a member of the Institution of Engineers

(India), The American Society of Mechanical Engineers

(ASME) and Indian Society for Technical Education

(ISTE). His research interest is Non-Conventional

Machining and Mechatronics.

Email: mrd.mfg@coep.ac.in

Appendix I
S. No. Abbreviation Description

1 2D Two-Dimensional

2 3D Three-Dimensional

3 AdaBoost Adaptive Boosting

4 AI Artificial Intelligence

5 AlexNet A Convolutional Neural Network (CNN)

Architecture, Designed by Alex

Krizhevsky.

6 AVA Atomic Visual Actions

7 BC Bagging Classifiers

8 BF Bilateral Filtering

9 CNN Convolution Neural Network

10 CONVLSTM Convolution and Long Short Term

Memory

11 CIS Critical Infrastructure Sites

12 DLXM Deep Learning with Depthwise

Separable Convolution (Xception)

Model

13 Faster RCNN Faster Region-based Convolutional

Neural Network

14 FN False Negative

15 FP False Positive

16 GB Giga Byte

17 GPU Graphics Processing Unit

18 HAR Human Activity Recognition

19 HMDB Human Motion DataBase

20 Inception-V2 Inception-ResNet-v2 is a Convolutional

Neural Network

21 KNN K-Nearest Neighbor

22 KTH Swedish: 'Kungliga Tekniska

högskolan', English: 'Royal Institute of

Technology'

23 LRCN Long-term Recurrent Convolutional
Network

24 LSTM Long Short Term Memory

25 MLPC Multilayer Perceptron Classifier

26 MuHAVi Multicamera Human Action Video

27 PCA Principal Component Analysis

28 PSRA6 Perimeter Surveillance Related Activity
for six human action classes

29 RAM Random Access Memory

30 RCNN Region-Based Convolutional Neural
Network

31 ResNets Residual Network

32 ReLU Rectified Linear Unit

33 RF Random Forest

34 RNN Recurrent Neural Network

35 RWF Real-World Fighting

36 SSD Single Short Detector

37 SoftMax Smooth Approximation to the

Arguments of the Maxima

38 SVM Support Vector Machine

39 TN True Negative

40 TP True Positive

41 UAV Unmanned Aerial Vehicles

42 UCF University of Central Florida

43 URL Uniform Resource Locator

44 VATIC Video Annotation Tool from Irvin,

California

45 VGG Visual Geometry Group

46 VGG16 A Convolutional Neural Network

Architecture Named After the Visual
Geometry Group from Oxford with 16

Layer

47 VLC Video LAN Client

48 YOLOv3 You Only Look Once, Version 3

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Alex_Krizhevsky
https://en.wikipedia.org/wiki/Alex_Krizhevsky
https://en.wikipedia.org/wiki/Alex_Krizhevsky

Rukhsarbano S. Sheikh et al.

66

Appendix II
This appendix provides details of sample calculations behind classification report (Table 6) for gun firing class with reference to the confusion

matrix of 2-layer CNN model for 100 epochs (Figure 16 (c) 100 epochs).

Below calculation is for numerator and denominator part of micro average calculation in table. All values in calculation are taken from above confusion

matrix.

∑

∑

Below calculation is for numerator part of weighted average calculation in table. All values in calculation are taken from above confusion matrix.

∑
∑
∑

Appendix III

Classification report calculation for 2-layer CNN model for 100 epochs

Classes

 ∑

 ∑

 ∑

Gun firing

Crawling

Fighting

Wall climbing

Falling of human

Walking with dog

 ∑

5.8249

∑ ∑ ∑

∑

∑ ∑

-

∑

-

∑

∑

-

