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1.Introduction 
Due to the significant rise in both fatal injuries and 

property damage caused by road collisions, 

addressing this issue has become a pressing global 

concern [1]. These accidents have devastating 

consequences, leading to a significant loss of lives 

and extensive property damage worldwide. In 2020, 

according to the organisation for economic co-

operation and development (OECD) 

(https://stats.oecd.org), road accidents claimed 3,347 

lives in Morocco, while Algeria witnessed over 3,500 

fatalities. France recorded 2,579 deaths and 

approximately 60,000 injuries due to road accidents 

in the same year.  
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Canada experiences an annual average of 1,700 road 

accident fatalities, along with countless injuries. 

Similarly, Australia witnesses over 1,000 fatalities 

and numerous serious injuries annually. The United 

States (U.S.), with over 38,000 collision-related 

deaths in 2020 and millions of dollars in property 

damage, ranks among the countries with the highest 

rates of road accidents. Given these alarming 

statistics, several countries, including Canada [2], 

Australia [3], and the U.S. [4], have been actively 

striving to develop innovative systems that can 

effectively prevent accidents. 

 

Effectively addressing the gravity of road crashes 

entails tackling several challenges. It is crucial to 

thoroughly consider factors such as the count of 

fatalities, injuries, and property losses to determine 
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Traffic accidents pose a significant global threat to public safety, with the World Health Organization (WHO) estimating 

that they claim the lives of approximately 1.25 million individuals each year. Without intervention, traffic accidents are 

projected to become the leading cause of death by 2030. Predicting accident severity and understanding their underlying 

causes represent crucial steps in developing effective strategies to prevent accidents and enhance overall traffic safety. 

This paper presented an in-depth analysis of accident severity prediction, considering a wide range of factors, including 

the vehicle, driver, environmental conditions, and more. The study aims to predict the extent of the severity of traffic 

accidents using a comprehensive dataset comprising over 4 million incidents that occurred across 49 states in the United 

States of America (USA) between February 2016 and December 2020. Various machine learning models, including 

logistic regression (LR), support vector machine (SVM), decision tree (DT), and random forest (RF), were implemented 

and rigorously evaluated against multiple performance metrics. The achieved results reveal that the RF model stands out 

with the highest accuracy of 91% in predicting accident severity. Additionally, this model demonstrates excellent 

performance across additional evaluation metrics, including a precision rate of 89%, a recall rate of 91%, a root mean 

square error (RMSE) of 18%, and an F1 score of 89%. These findings emphasize the exceptional predictive power and 

robustness of the RF model, making it a highly promising approach for real-world traffic accident scenarios. This 

research provides valuable insights into predicting accident severity, which is crucial for the development of effective 

accident prevention strategies and improvements in traffic safety. 
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the severity of accidents. However, accurately 

forecasting accident severity remains a crucial yet 

complex task in the field of accident management. 

Driven by the imperative to mitigate the destructive 

consequences of road accidents, the aim of this 

research is to develop a robust model that can reliably 

forecast accident severity. Such a model plays a 

critical part in guiding the decision-making process 

and can facilitate the implementation of targeted 

prevention measures. To achieve this goal, the 

research has set forth the following objectives: (1) 

Undertake an extensive literature review to establish 

a solid foundation for the study, (2) Identify and 

analyze key factors contributing to the traffic 

accident severity, (3) Employ machine learning 

techniques to analyze and clean the collected data, (4) 

Implement and evaluate different models, including 

logistic regression (LR), support vector machine 

(SVM), decision tree (DT), and random forest (RF), 

to determine the most efficient approach for 

predicting accident severity. 

 

To successfully apply a machine learning algorithm 

to a database of 4 million records, access to both 

robust hardware and efficient software capable of 

handling demanding computational tasks is essential. 

In our study, we recognized the computational 

challenges posed by the extensive dataset, and we 

utilized the resources and hardware provided by our 

institution's research computing facility. The 

experiment was conducted on a server equipped with 

a substantial computational capacity, boasting 48 

cores derived from two AMD EPYC 7402 24-core 

processors. This high-performance infrastructure was 

essential for the efficient training of the machine 

learning models in our research. Given the sheer 

volume of data, comprising over 4 million traffic 

accident incidents, we were well aware of the 

resource-intensive nature of our study. To address 

this, we employed a cluster of high-performance 

graphics processing units (GPUs) known for their 

exceptional efficiency in handling deep learning 

tasks. Leveraging these GPUs enabled us to 

significantly reduce training times and effectively 

manage the extensive dataset. Furthermore, we 

implemented distributed training techniques across 

multiple GPUs and carefully optimized batch sizes to 

maximize the utilization of our computational 

resources. This approach allowed us to strike a 

balance between efficient resource utilization and 

training effectiveness. 

 

As for the software requirements, we employed 

popular deep learning frameworks, namely 

TensorFlow and PyTorch, for implementing and 

training our machine learning models. These 

frameworks are widely recognized for their 

compatibility with GPU acceleration and their 

extensive libraries for building and optimizing deep 

neural networks. The entire research project was 

conducted in Python, which served as the primary 

programming language for data preprocessing, model 

development, and evaluation. We used various 

Python libraries for data preprocessing, including 

pandas for data manipulation, NumPy for numerical 

operations, sci-kit-learn for feature engineering and 

model evaluation, and Matplotlib and Seaborn for 

data visualization. 

 

The article begins by offering a comprehensive 

overview of the relevant literature in Section 2, 

establishing a solid foundation for our study. It then 

conducts an in-depth analysis of key factors 

contributing to the severity of traffic accidents, 

shedding light on critical determinants. In Section 3, 

the article outlines the sophisticated machine-learning 

techniques employed for data analysis and cleansing, 

ensuring the robustness of our approach. Section 4 

explores the evaluation criteria meticulously utilized 

to assess the performance of various models, 

providing insight into our rigorous analysis. The 

subsequent section showcases the results of our 

analysis, accompanied by a thorough discussion that 

delves into the nuances and implications of our 

findings in Section 5. The article concludes by 

summarizing key takeaways and offering insights 

into their practical implications for enhancing road 

safety measures. 

 

2.Literature review  
2.1Road safety  

Road safety issues have become a global concern [5], 

as traffic accidents cause injuries, deaths, and major 

property loss [6]. In recent years, road accidents have 

garnered increasing attention across multiple 

disciplines [7].  Researchers in the field of accident 

prevention have made considerable efforts to forecast 

accident severity and understand its determinants, 

culminating in two distinct categories of findings. 

The first category underscores the significance of 

driver behavior and driving practices as substantial 

risk factors influencing both the likelihood and 

intensity of accidents [8, 9]. Studies within this 

category delve into the intricate interplay between 

driver conduct and accident outcomes. The second 

category of research encompasses a comprehensive 

examination of interactions among three essential 

elements: the driver, the vehicle, and the environment 
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[10, 11]. This section of literature explores the 

multifaceted relationships between these factors and 

accident severity, shedding light on their intricate 

dynamics. This study falls within the ambit of the 

second category of literature, which scrutinizes the 

determinants of road accident severity through a 

comprehensive consideration of multiple interacting 

elements.  

 

Furthermore, much of the research in recent decades 

has primarily relied on small-scale datasets with 

limited coverage, often confined to a few road 

segments or a single city [12–14]. Notable examples 

include the work of Chang et al. [12], who utilized 

road geometry, annual average daily traffic, and 

weather data to predict accident frequency for a 

highway road using a neural network model. Kumar 

and Toshniwal [13] applied data mining techniques to 

extract association rules for causality analysis, 

utilizing a small-scale dataset. Similarly, Wenqi et al. 

[14] applied a convolutional neural network model 

for accident prediction on a road segment. While 

these insights and findings are intriguing, the limited 

scale of the datasets used raises questions about the 

applicability and generalizability of the results. 

 

Certainly, there are numerous studies that have 

employed larger-scale datasets [15, 16]; however, in 

many cases, these datasets have either been private, 

not easily accessible, or outdated. To address these 

challenges, we utilize a large-scale accident dataset 

with countrywide coverage, featuring comprehensive 

data attributes, including location, time, weather, 

period of day, and points of interest (POI) 

annotations. 

 

2.2Factors related to the severity of road accidents 

The objective of the traffic accident severity 

prediction model is to correctly anticipate the gravity 

of the traffic accident, and identify the major 

contributing variables [17]. Determining these factors 

helps reduce accident rates, decrease accident 

severity, and mitigate injuries, fatalities and property 

loss [18]. The identification of relevant factors is a 

prerequisite before starting the predicting process 

since they serve as the input for the severity 

prediction models. Previous works [19] have 

demonstrated that variables about driver, vehicle, 

road, weather, and external factors are the primary 

ones related to accident severity. 
2.2.1Driver related factors 

Many driver characteristics such as gender, age, 

behaviours, and the psychological and psychic state 

of the driver are potential sources of accidents on the 

roads. Young age drivers are linked to elevated levels 

of accident severity. Previous research shows that 

younger drivers are more likely than experienced 

drivers to have accidents due to risky behaviours 

such as speeding, and alcohol and drug abuse [20]. 

Gender also influences accident severity; males are 

more prone to fatal injuries than females [21]. The 

ingestion of alcohol and drugs, including substances 

like cocaine, marijuana, or any other illicit drug, 

before or during driving, impairs driver judgment due 

to their euphoric effects. These impairments have an 

adverse effect on the severity of accidental injuries 

[22]. Furthermore, failure to follow safe driving rules 

contributes to an escalation in the gravity of an 

accident such as not wearing a seat belt while driving 

which are effective at avoiding deaths [20]. Lastly, 

the psychological state of the driver can quickly have 

a negative impact on the trajectory. It is the driver's 

visual abilities that allow him to see danger and 

transmit the information to his brain so that he can 

analyse the situation and make the appropriate 

decision. When a driver gets behind the wheel when 

he is tired or drowsy, his alertness and reaction time 

deteriorate. 
2.2.2Vehicle-related factors 

Other than driver factors, vehicle factors are also 

having an impact on crash severity. The age of the 

vehicle [23] is related to accident severity, as the age 

of a vehicle increases, the probability of it being 

implicated in a severe accident also rises. 

Additionally, mechanical malfunctions further 

amplify the severity of accidents [24]. Particularly, 

the cost of cars has an unfavorable correlation with 

accident severity. This objective result seems 

unexpected but can be explained by drivers not 

taking big risks if the car is expensive. Additionally, 

the size of the vehicle has an impact on how likely 

accidents are to occur; bigger vehicles are more 

likely to result in deadly accidents [21]. 

2.2.3Road related factors 

The intensity of collisions is greatly influenced by the 

state of the roads. Several road characteristics could 

influence the intensity of an accident. The existence 

of traffic lights diminishes the occurrence of side 

collisions, thereby reducing the likelihood of severe 

accidents [25]. Moreover, roads equipped with cruise 

control are correlated with a reduced likelihood of 

causing significant injuries compared to roads 

without cruise control [26]. Moreover, accidents that 

occur at intersections are more prone to be severe 

compared to those happening on other roads. [27]. In 

addition, road width is also an important factor. 

Fewer serious and fatal accidents occur on wider 

roads [21]. 
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2.2.4Weather related factors 

In general, the major environmental factors that most 

affect weather conditions are temperature, 

atmospheric pressure, wind, humidity, precipitation, 

and nebulosity (clouds, fog). Together, these factors 

give the weather at a given location at a given time. 

Weather conditions also contribute to influencing the 

accident severity. Various weather factors affect the 

severity of accidents, serious accidents are more 

likely to happen on foggy days due to the visibility 

[28], and rain and snow, in turn, are strongly linked 

to it [29]. 
2.2.5Visibility related factors 

Besides weather conditions, environmental factors 

also influence the severity of accidents. Reduced 

visibility during night time increases the fatality of 

accidents compared to those occurring during 

daylight hours [30]. 

 

3.Methodology 

3.1Machine learning process 

Figure 1 shows the proposed study process. To find 

and handle corrupted or absent records, data 

cleansing was first carried out. After that, most of the 

features underwent exploratory data analysis (EDA) 

and feature engineering. Four classifiers are 

implemented to develop predictive models. Finally, 

different evaluation criteria were used to evaluate 

those models. 
3.1.1Data 

The dataset utilized in this study was graciously 

made available by the National Highway Traffic 

Safety Administration (NHTSA), a division operating 

under the U.S. Department of Transportation with the 

objective of mitigating the consequences of vehicle 

crashes, including injuries, fatalities, and economic 

repercussions. Spanning all 49 states across the U.S., 

this extensive dataset comprises over four million 

records documenting traffic accidents that occurred 

between 2016 and 2020. It is openly accessible to the 

academic community at 

https://smoosavi.org/datasets/us_accidents and has 

been employed in several notable research articles [1, 

31], underscoring its value as a valuable resource for 

academic investigation. 

 

To ensure the dataset's comprehensiveness, data 

collection was conducted through a systematic 

approach, amalgamating information from various 

sources, including law enforcement reports, 

emergency medical service records, traffic cameras, 

and citizen reports. The dataset has been 

meticulously categorized into four principal 

categories: 'Environment' (encompassing weather 

conditions and visibility), 'Location' (providing 

geographical coordinates for precise accident 

locations), 'Infrastructure' (detailing road 

characteristics and traffic infrastructure), and 'Basic' 

(providing foundational accident information) as 

shown in Figure 2. For a comprehensive 

understanding of these categories and data attributes, 

Tables 1 to 5 offer detailed explanations and 

exemplifications. This comprehensive dataset, 

coupled with its systematic categorization and 

extensive data collection, forms a robust basis for our 

research, ensuring the depth and reliability of our 

analysis. 

 

 
Figure 1 Process proposed for this study 

 
3.1.1.1Dataset collection mechanism 

Figure 3 provides an overview of the dataset creation 

process, while the subsequent sub-sections offer 

detailed descriptions of each individual step. 
3.1.1.1.1 Traffic data collection 

In their study, as documented in [31], the authors 

utilized real-time traffic data collection methods to 

gather streaming traffic data from two prominent 

real-time data providers, namely, 'MapQuest Traffic’ 

[32] and 'Microsoft Bing Map Traffic' [33]. These 

data providers offer comprehensive APIs that 

disseminate real-time traffic events, encompassing 

accidents, congestion, and other relevant information 

sourced from diverse entities, including the US and 
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state departments of transportation, law enforcement 

agencies, traffic cameras, and road-network traffic 

sensors. In their research, the authors meticulously 

compiled a substantial dataset of 2.27 million traffic 

accident instances, with 1.73 million cases sourced 

from MapQuest and an additional 0.54 million cases 

from Bing. 

 

Following real-time data collection, data integration 

involved the elimination of cases duplicated between 

the two sources and the construction of a cohesive 

dataset. The criteria for identifying duplicates 

involved considering two events as such if their 

haversine distance and recorded times of occurrence 

were both below predefined thresholds, specifically 

set at 250 meters and 10 minutes, respectively. 

 

 
Figure 2 Data categorizing 

 
3.1.1.1.2 Data augmentation 

The collected data was enriched through a two-fold 

augmentation process: 

• Reverse Geocoding: Initially, the raw traffic 

accident records contained solely GPS data. To 

provide a more comprehensive understanding of 

the accidents' locations the Nominatim tool is 

used. This tool enabled the conversion of GPS 

coordinates into detailed addresses, encompassing 

street number, street name, relative side 

(left/right), city, county, state, country, and zip 

code. 

• Weather data and POI: Weather information plays 

a crucial role in providing context for traffic 

accidents. For this purpose, the weather 

underground API was employed to gather 

pertinent weather data for each accident. Beyond 

weather details, the dataset was further enriched by 

the inclusion of POI. These POI annotations were 

sourced from open street map (OSM) for the 

United States. Notably, only the POI annotations 

within a defined distance threshold were added to 

the traffic accident dataset. 
3.1.2Pretreatment 

Before running a machine learning algorithm on the 

data, the pre-processing phase must be completed. 

During this phase, the relevant features are selected, 

and the data is cleaned of any missing or abnormal 

values. The aim is to verify that the data is in an 

optimal state before applying the algorithm. The first 

step of the pre-processing phase is performed 

independently on each dataset. The objective is to 

develop a model that can aid in enhancing the overall 

system's efficiency during road accidents in the 

future. Consequently, only the pertinent variables that 

can be employed as input to assess the accident's 

severity are retained. This implies that the retained 

items consist solely of information available from the 

accident description provided during the emergency 

call or any deducible information derived from it. 
3.1.2.1Remove unnecessary features 

The ID attribute lacks meaningful information 

regarding the event and can be ignored. Similarly, 

variables such as 'TMC', 'Distance', 'End-Time', 

'Duration', 'End-Lat', and 'End-Lng' are not suitable 

for predicting serious accidents as they can only be 

observed or measured after the accident has already 

taken place. Additionally, 'Country' and 'Turning-

Loop' are also removed from the analysis since they 

only consist of a single class and do not contribute to 

the prediction task. These variables are excluded 

from the dataset as they do not provide any valuable 

insights or predictive power for identifying severe 

accidents. 
3.1.2.2Minimize categorical characteristics 

Upon careful examination of the categorical features, 

it becomes evident that there is some disorderliness 

in "Wind_Direction" and "Weather_Condition". 

Consequently, it is necessary to perform data 

cleaning and organize these variables appropriately. 

a) Wind direction: Wind direction characteristics 

before cleaning were [‘Calm’ ‘SW’ ‘SSW’ 

‘WSW’ ‘WNW’ ‘NW’ ‘West’ ‘NNW’ ‘NNE’ 

‘South’ ‘North’ ‘Variable’ ‘SE’ ‘SSE’ ‘ESE’ 

‘East’ ‘NE’ ‘ENE’ ‘E’ ‘W’ nan ‘S’ ‘VAR’ 

‘CALM’ ‘N’]. It is evident that there are 

repetitions. After cleaning treatment Wind 

direction was simplified to: [‘CALM’ ‘SW’ ‘S’ 

‘W’ ‘NW’ ‘VAR’ ‘SE’ ‘E’ ‘NE’ nan].  

b) Weather conditions: Each year, vehicle accidents 

associated with weather conditions claim more 

lives than major weather catastrophes. The road 

weather management program reports that the 

majority of weather-related accidents occur on wet 
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roads and during periods of precipitation. 

Additionally, winter weather conditions and fog 

are identified as two significant factors 

contributing to weather-related accidents. The 

initial step in identifying these three weather 

conditions is to analyze the data contained within 

the "Weather_Condition" feature. 

 

 
Figure 3 Process of creating traffic accident dataset [31] 

 

Weather Conditions feature are  ['Clear', 'Cloudy', 

'Drizzle', 'Dust', 'Dust Whirlwinds', 'Fair', 'Fog', 

'Funnel Cloud', 'Hail', 'Haze', 'Heavy ', 'Heavy 

Drizzle', 'Heavy Ice Pellets', 'Heavy Rain', 'Heavy 

Rain Showers', 'Heavy Sleet', 'Heavy Snow', 'Heavy 

T-Storm', 'Ice Pellets', 'Light ', 'Light Drizzle', 'Light 

Fog', 'Light Hail', 'Light Haze', 'Light Rain', 'Light 

Snow Shower', 'Light Snow Showers', 'Light 

Thunderstorm', 'Low Drifting Snow', 'Rain', 'Rain 

Shower', 'Rain Showers', 'Sand', 'Scattered Clouds', 

'Shallow Fog', 'Smoke', 'Snow', 'Snow Grains', 'Snow 

Showers', 'Squalls', 'T-Storm', 'Thunder', 

'Thunderstorm', 'Thunderstorms', 'Tornado', 'Windy', 

'Wintry Mix'] 

Considering the variety of meteorological conditions 

described earlier, various features were categorized 

for common weather conditions. Weather Conditions 

after grouping were reduced to [‘Clear’, ‘Cloudy’, 

‘Fog’, ‘Rain’, 'Heavy_Rain', ‘Smoke’, ‘Snow’, 

'Heavy_Snow', ‘Windy’]. 
3.1.2.3Fixing the date and time 

The average time difference between 'Start-Time' and 

'Weather_Timestamp' is calculated to be 0 days. 

Given that 'Weather_Timestamp' is almost identical 

to 'Start-Time', it is feasible to retain only the 'Start-

Time' variable. Consequently, the 'Start-Time' can be 

associated with the 'Year', 'Month', 'Weekday', 'Day', 

'Hour', and 'Minute' attributes, as demonstrated in 

Table 6. This simplification allows for a more 

streamlined and efficient representation of the 

temporal information associated with the accidents. 
3.1.2.4Processing missing data 

a) Features to remove: A significant proportion, 

specifically over 60%, of the data for the 'Number', 

'Wind_Chill(F)', and 'Precipitation(in)' variables 

are missing. Based on previous research indicating 

a weak relationship between 'Number' and 

'Wind_Chill(F)' variables with accident severity, 

they will be excluded. However, 'Precipitation(in)' 

is deemed a potentially valuable predictor and will 

be handled separately as a distinct function. 

b) Distinct feature: A new feature is introduced to 

handle missing values in the "Precipitation" 

variable. The missing values are substituted with 

the median value, as indicated in Table 7. 

c) Imputation of Value: A significant portion of the 

remaining columns shows just a few numbers of 

missing data, which could be addressed through 

filling or imputation methods. 

 

Continuous weather data features: It includes various 

features such as temperature, humidity, pressure, 

visibility, and wind speed. However, some of these 

features may have missing values. To address this, 

the weather data is organized by location and time, 

since time is inherently linked to weather conditions. 

The location feature chosen for this purpose is 

'Airport_Code' since the weather data is sourced from 

airport-based weather stations. 

 

Next, the data is categorized based on the 'Start-

Month' instead of the 'Start-Hour'. This decision is 

made to minimize computational costs and to deal 

with fewer missing values. By grouping the data in 

this way, we can establish distinct subsets based on 

the month in which the weather data was recorded. 
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Once the data is grouped accordingly, the missing 

values within each group are imputed using the 

median value. This means that for each specific 

location, period (start month), and weather feature, 

the missing values are exchanged with the median of 

that particular group. This approach allows us fill in 

the gaps in the weather data while minimizing the 

impact of outliers or extreme values. Categorical 

weather features: When it comes to categorical 

weather characteristics, a different approach is taken 

to handle missing values. Instead of using the 

median, the majority value is used to replace these 

missing values. 
3.1.3Treatment 

This article aims to create a web application that 

employs machine learning algorithms to accurately 

predict the severity of accidents. To do this, different 

models are applied and evaluated and the best model 

showing the best measure is selected. The measures 

used to assess each model are then loaded after the 

data has been divided into training and testing 

portions. 
3.1.3.1Logistic regression(LR) 

It is the most often used regression model [34], this 

model is used in machine learning to help create 

accurate predictions. It is a statistical model that 

predicts the probability of an event occurring (1) or 

not (0) based on regression coefficients. It shows the 

relationship between traits and calculates the 

probability of a particular outcome which always 

varies between 0 and 1. An event is more likely to 

happen when the expected variable is greater than a 

threshold but not when this value is less than the 

same threshold [35]. LR can be defined as shown in 

Equation 1 and Equation 2 [34]. 

 ( )   
    (     )

      (     )
   (1) 

 ( )   
 

      (     )
   (2) 

 

Where x ∈ 𝑅𝑛 is the input entity, Y ∈ {0,1} is the 

label vector w denotes the weight, b represents the 

weight value, and w.x signifies the scalar product of 

the matrices (Equation 3). When two probability 

values are compared, LR allocates x to the range that 

possesses the highest probability value [36].  

 ( )   
    (     )

      (     )
    (3) 

Figure 4 shows the LR graphically. 

 

Table 1 Basic category (Traffic attributes) 

Attributes Description 

ID Each accident record has a unique identifier, which is the ID 

Severity 

Severity is a number between 1 and 4 indicating the gravity of the accident.  

When the accident has a significant impact on traffic the severity equal 4, and 1 indicates the 

least impact on traffic.  

Start-Time 
Represents the start time and end time. 

End-Time 

Start-Lat 

Represent the latitude and Longitude of the start and the end point of the accident in GPS 

coordinates. 

Start-Lng 

End-Lat 

End-Lng 

Distance(mi) The distance of the road where the accident occurred 

 

Table 2 Localization category (Address attributes) 

Attributes Description 

Number 

Represent data related to the address  

Street 

City 

State 

Zipcode 

Country 

Side Represent the relative side of the road 

Timezone Shows the timezone of the accident location 

 

Table 3 Environment category (Weather Attributes) 

Attributes Description 

Airport_Code 
Indicates the nearest weather station to the mishap site, which is located at an 

airfield. 
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Attributes Description 

Weather_Timestamp Displays the weather data record's time tag. 

Temperature Represent the temperature 

Wind_Chill Represent the wind chill  

Humidity Represent the humidity  

Pressure Displays the atmospheric pressure at the scene of the mishap. 

Visibility Displays visibility in the accident road 

Wind_Direction Demonstrates the mishap site's wind direction 

Wind_Speed Displays wind speed in the accident location 

Precipitation Displays the quantity of rain in inches 

Weather_Condition Shows the weather conditions in the accident location 

 

Table 4 Environment category 
ATTRIBUTES DESCRIPTION 

SUNRISE-SUNSET 

DISPLAYS THE TIME OF DAY 
CIVIL-TWILIGHT 

NAUTICAL-TWILIGHT 

ASTRONOMICAL-TWILIGHT 

 

Table 5 Infrastructure category (Point-Of-Interest attributes) 

Attributes Description 

Amenity 

 

Points of Interest (POI) are various attributes or annotations that 

indicate the presence of specific features in nearby locations. These 

features include speed bumps or humps, intersections, railroads, 

terminals (bus, trains, etc.), stop signs, traffic calming measures, 

lights, and turning loops. 

Bump 

Crossing 

Give-Way 

Junction 

No-Exit 

Railway 

Roundabout 

Station 

Stop 

Traffic-Calming 

Traffic-Signal 

Turning-Loop 

 

Table 6 'Start-Time' and the 'Year', 'Month', 'Weekday', 'Day', 'Hour', and 'Minute' attributes 
 Start time Year Month Weekday Day Hour Minute 

0 2016-02-08 

05:46:00 

2016 2 0 39 5 346 

1 2016-02-08 

06:07:59 

2016 2 0 39 6 367 

2 2016-02-08 

06:49:27 

2016 2 0 39 6 409 

3 2016-02-08 

07:23:34 

2016 2 0 39 7 443 

4 2016-02-08 

07:39:07 

2016 2 0 39 7 459 

 

Table 7 Handling missing values in the "Precipitation" 
 Precipitation Precipitation-NA 

0 00.02 0 

1 00.00 0 

2 00.00 1 

3 00.00 1 

4 00.00 1 

5 00.03 0 
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LR hyperparameter tuning: 

Hyperparameter tuning plays a pivotal role in the 

machine learning process, as it is instrumental in 

aligning a model with the desired performance 

metric. In the context of LR, several key 

hyperparameters warrant careful consideration. These 

include the choice of solver, the specification of 

penalty, and the determination of regularization 

strength. 

 

The solver serves as the optimization algorithm that 

guides the LR model. Penalty, on the other hand, is a 

regularization technique utilized to counteract 

overfitting by introducing a penalty term into the loss 

function. When employing L2 penalty, the penalty 

term equates to the sum of the squares of the model's 

weights, thereby influencing the cost function. The 

strength of this penalty is governed by the 

hyperparameter 'C,' where smaller 'C' values 

correspond to more robust regularization. Scikit-

learn, commonly referred to as Sklearn, is a 

prominent machine learning library extensively 

utilized in the realm of data science within the Python 

programming language. In the context of 

implementing the LR model, the model's 

performance is greatly influenced by the values of its 

hyperparameters. To precisely identify the optimal 

hyperparameter values for the LR model, the 

GridSearchCV function is employed, playing a 

pivotal role in the hyperparameter tuning process. To 

systematically explore the hyperparameter space, a 

comprehensive grid search was conducted, and the 

detailed results are provided in Table 8. The 

graphical representation of the grid search's outcomes 

can be observed in Figure 5. 

 

 
Figure 4 LR graph 

 

Table 8 Hyperparameter grids used for LR 

Model grid 

size 

Hyperparameter Values range 

LR 23 L2 penalty {0.001, 0.03, 

0.005, 0.007, 

0.01, 0.03, 0.05, 

. . . ,1.3, 1.7, 5, 

10, 50, 100, 500, 

1000, 5000, 

10000} 

3.1.3.2Support vector machine 

The SVM, a supervised machine learning technique, 

is grounded in the statistical theory of risk reduction. 

[37]. It was first developed by Vapnik et al [38] for 

classification problems, then it was updated to its 

latest version by Vapnik and Cortes in 1995 [39], and 

in 1998 it was developed and adapted to regression 

problems by Vapnik [40]. Today SVM is used in 

various areas that go from classification, and 

regression to character recognition and time series 

[41, 42]. Relative to alternative machine learning 

methods, SVM has some benefits. Focusing on 

reducing structural risk, makes it demand less data, 

have higher prediction accuracy, fewer adjusted 

parameters, and faster speed [43]. 

 
Support vector machine hyperparameter tuning: 

Optimizing a machine learning model through 

hyperparameter tuning is a critical phase in the model 

development process. Specifically, in the case of 

SVM, the pivotal hyperparameters under 

consideration are 'C' and 'γ' (gamma). 

 C: Acting as the penalty parameter for the error 

term, 'C' plays a fundamental role in striking a 

balance between achieving a smooth decision 

boundary and accurately classifying the training 

data points. 

 γ (gamma): 'γ' determines the extent to which a 

single training example's influence extends, with 

low values indicating a broader influence and high 

values signifying a more localized impact. 

 

In our pursuit of hyperparameter optimization, 

exhaustive hyperparameter grid search was executed, 

and the comprehensive results are presented in Table 

9. GridSearchCV is the function used from Scikit-

learn python library, to perform hyperparameter 

tuning in order to determine the optimal values for 

the model. The outcome of implementing the SVM 

model is thoughtfully illustrated in Figure 6. 

 

Table 9 Hyperparameter grids used for SVM 

Model Total 

grid 

size 

Hyperparameter Values range 

 

SVM 

 

96 

C  {0.01, 0.1, 1, 

10, 100, 1000} 

Kernel  {linear, RBF} 

Loss  Squared hinge 

γ  {0.1, 0.3, 0.5, 

1.0, 1.5, 2.0, 

scale, auto} 
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3.1.3.3Decision tree 

DT algorithm is a supervised machine learning 

technique employed for solving regression or 

classification problems. It was initially proposed by 

Hunt et al. [44] in the 1960s. Research has proven 

that DTs are easy to understand and quick to learn 

and classify [45]. For this, it remains a fundamental 

and privileged tool to obtain classification rules [46]. 

This method has been employed extensively in fields 

like illness and mishap prediction [47]. 

 

DT has a hierarchical tree structure. Each tree 

consists of these four elements [48], as shown in 

Figure 7: 

 Root: it is at the top of a Tree, and it represents the 

first node where the first split takes place. 

 Internal Node: it is located between the leaf and 

root nodes; it signifies a test conducted on an 

attribute. 

 Branch: it is each branch that connects the leaf 

node to the root one. it shows the test output. 

 Edge: It indicates the direction to the next node. 

 Leaf Node: Terminal nodes that predict the result 

of the DT.  
 

The process of creating a DT model can be compared 

to a recursive division that divides a source set into 

subgroups according to a split criterion. Each derived 

subgroup is subjected to this procedure once more 

[49]. The recursion ends when splits are no longer 

useful or when all derived subsets can perform a 

single classification [50].‘‘If A, then the B’’ rule can 

be made by tracing the route from the parent node to 

the leaf node. Figure 8 summarizes the DT model 

setting up process. 

 

DT hyperparameter tuning:  

Hyperparameter tuning for the DT model is a process 

that entails fine-tuning several parameters to enhance 

the model's performance. Within the realm of DTs, 

there are several critical hyperparameters that merit 

attention, including Max Depth, Min Samples Split, 

Min Samples Leaf, and Max Features. 

 

To systematically explore the hyperparameter space, 

a comprehensive grid search is conducted, the results 

of which are presented in Table 10. The DT model 

featured in this article is crafted using the Sklearn 

library and leverages the GridSearchCV function for 

hyperparameter optimization. The outcome of 

implementing the DT model is thoughtfully 

illustrated in Figure 9. 

 

 

3.1.3.4Random forest 

As described in reference [51] the RF algorithm is a 

notable ensemble technique that draws inspiration 

from random fractional selection [52] and random 

subspace techniques [53]. It is a set of tree-based 

classifiers combined for classification [54]. The RF 

classifier is primarily an ensemble method that 

involves using a set of DTs, where each tree is 

trained separately on a different subset of the training 

dataset. This is accomplished by first aggregating 

different groups of the available predictive factors 

[51]. The distinctiveness of each DT in the RF stems 

from the random selection of predictive variable 

subsets. This randomization process contributes to 

lowering the overall variance of the classifier. In the 

end, the RF classifier combines the choices made by 

the individual trees for decision-making using a 

voting process analogous to majority voting. In other 

words, each DT selects a group for each observation, 

and the RF selects the category with the most votes. 

 

Most classification methods use the RF machine 

learning algorithm.  RF is an efficient and robust 

method that is known for its speed and ability to 

handle noisy data effectively. One of the key 

advantages of RF is its ability to detect non-linear 

patterns within the data. Another strength of RF is its 

capability to handle both numerical and categorical 

data with ease. It can efficiently process digital and 

categorical features, eliminating the need for 

extensive preprocessing or transformation of the data. 

Furthermore, RF has a built-in mechanism that 

prevents overfitting, even when additional trees are 

added to the ensemble [55]. 

 

Random forest hyperparameter tuning:   
The primary hyperparameters crucial for the RF 

model encompass the number of estimators, 

maximum features, minimum samples for splitting, 

minimum samples for leaf nodes, and the cost-

complexity parameter denoted as α. These 

hyperparameters are detailed in Table 11. 

 

For the purpose of hyperparameter tuning in the RF 

model, the same function, GridSearchCV, is 

employed as utilized previously. The outcome of 

implementing the RF model is visually represented in 

Figure 10. 

 

3.2Evaluation criteria of the analysis 

The most common criterion for evaluating a model is 

accuracy [56]. Accuracy, confusion matrix, precision, 

recall, root mean square error (RMSE), and f1 score 

are typical performance metrics for assessing each 
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classifier's performance in this study, which works 

with a classification-based issue [57]. The objective 

of this evaluation is to determine the most performed 

machine learning algorithm that is precise, 

dependable and has the greatest accuracy. 

 
Figure 5 Confusion Matrix of the " LR" model     Figure 6 Confusion Matrix of the " SVM" model 

 

 
Figure 7 DT Structure 

 

Table 10 Hyperparameter grids used for DT 
Model Total Grid 

Size 

Hyperparameter Values range 

 
DT 

 
135 

Max depth {2, 4, 6, 8, 10} 

Min samples split {2, 5, 10} 

Min samples leaf {1, 2, 3} 

Max features {auto,  sqrt, 

sqrt} 

 

Table 11 Hyperparameter grids used for RF 
Model Total 

Grid Size 

Hyperparameter Values Range 

 

RF 

 

640 

Num. Estimators  {32, 64, 128, 

256, 512} 

Max Features  {sqrt, log2} 

Min. Samples Split  {2, 4, 8, 16} 

Min. Samples Leaf {1, 2, 4, 8} 

Cost-Complexity α  {0., 0.001, 0.01, 

0.1} 

 

3.2.1Confusion matrix  

The confusion matrix, presented in Table 12, 

provides a valuable tool for a more detailed analysis 

of the model's performance. The matrix is composed 

of four quadrants, each representing a distinct count 

of results or errors. The predicted values are at the 

top, while the actual values are depicted on the side. 

- True positives (TP): The correct predictions that have 

been classified in the positive class '1'. 

- False positives (FP): The incorrect predictions that 

have been falsely sorted in the class '1'. 

- False negatives (FN): The incorrect predictions that 

have been falsely classified in the negative class '0'. 

- True negatives (TN): The correct predictions that 

have been classified in the class '0'. 
3.2.2Accuracy 

Accuracy stands as the primary performance measure 

for classification models, calculated by summing the 

number of correct predictions (TN + TP) and 

dividing it by the total amount of predictions made 

(TP + TN + FP + FN)[57]. It is mathematically 

formulated as in Equation 4. As shown in Figures 5, 

6, 9, and 10, the accuracy value of LR, SVM, DT, 

and RF methods is respectively 90%, 90%, 90% and 

91%. 

         
                             

                     
 (4) 

3.2.3Precision 

It represents the accuracy of positive detections about 

the ground truth [57] i.e., how the model predicted 
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the positive values.  This ratio, as represented in 

Equation 5, compares the number of true positives 

(TP) to the total number of predicted positive 

examples (TP + FP).  Precision responds to the 

following question: " What percentage of positive 

identifications accurately corresponded to the actual 

instances? ». As shown in Figures 5, 6, 9, and 10, the 

precision value of LR, SVM, DT, and RF methods is 

respectively 86%, 87%, 90%, and 89%. 

          
              

                              
 (5) 

3.2.4Sensitivity 

Sensitivity or recall evaluates the ability of a model 

to accurately identify the positive predictions in 

comparison to the true reference values [57].  This is 

a performance metric that calculates the relationship 

between the number of TP and FN, as illustrated in 

Equation 6. The recall provides a response to the 

following question: "What proportion of actual 

positive results have been correctly identified? ». As 

shown in Figures 5, 6, 9, and 10, the recall value of 

LR, SVM, DT, and RF methods is respectively 90%, 

90%, 89% and 91%. 

       
              

                              
 (6) 

3.2.5Root mean square error 

The RMSE serves to gauge the precision of a 

predictive model for target values [58]. It quantifies 

the typical disparity between the real value and the 

predicted value, computed as outlined in Equation 7. 

Here, 'n' signifies the count of estimates, 'yj' 

represents the present estimate, and 'ŷj' denotes the 

mean estimate value. 

𝑅     √
 

 
∑ (     )  
     (7) 

3.2.6F1 score 

It is a method used to assess the performance of a 

model by utilizing the harmonic sum of sensitivity 

and precision [57]. It varies from 0 to 1.  Termed as 

the F Score or F Measure, it serves as a metric to 

capture the equilibrium between accuracy and recall. 

Since accuracy is sometimes more important than 

recall or vice versa, it is still not possible to abandon 

one of them.  

 

The F1 score can be defined as shown in Equation 8 

below. As shown in Figures 5, 6, 9, and 10, the F1 

value of LR, SVM, DT, and RF methods is 

respectively 87%, 88%, 90% and 89%. 

   
                  

                
   (8) 

 

4.Result  
Table 13 illustrates the comparison of results 

obtained from the machine learning models discussed 

earlier when applied to the accident data set. The 

differences in their performance are minimal, but the 

RF model stands out with the highest accuracy of 

91% in predicting accident severity. Additionally, 

this model demonstrates excellent performance 

across additional evaluation metrics, such as a 

precision rate of 89%, a recall rate of 91%, an RMSE 

of 18%, and an F1 score of 89%. 

 

 
Figure 8 Procedure for setting up DT model 

 

The scope of this work revolves around accidents and 

proposes a comparative study of four methods. While 

the process followed is specifically applied to the 

accident domain, its applicability extends across 

various sectors, encompassing workplace accidents, 

loss of goods, academic failure, and more. Apart 

from LR, SVM, DT, and RF, several other techniques 

can be employed. 

 

In the field of accident severity prediction, several 

previous studies have delved into various 

methodologies, with neural networks being one of the 

prominent approaches [59, 60]. Despite the 

commendable efforts made by these earlier 

investigations, our present study stands out by 

demonstrating superior accuracy compared to its 

predecessors. Our work builds upon the foundation 

laid by these prior endeavours, showcasing notable 

improvements in both predictive performance and 

robustness. Our model excels in accurately assessing 

accident severity, outperforming existing methods, 

and setting a new benchmark in this critical domain. 

The comparative study of machine learning models 

presented in this research demonstrates promising 
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results, particularly with the RF model exhibiting 

exceptional performance in predicting accident 

severity. These findings highlight the significance 

and effectiveness of the selected methods in 

addressing the challenges associated with accident 

severity prediction. 

 

4.1Optimizing model performance 

Optimizing the performance of our RF model was a 

critical aspect of our research. To achieve this goal, 

we conducted an extensive hyperparameter tuning 

process. We utilized a combination of grid search and 

random search techniques to systematically explore a 

wide range of hyperparameter configurations. 

Specifically, we fine-tuned several key 

hyperparameters for the RF model, including the 

number of trees in the forest, maximum tree depth, 

minimum samples required to split a node, and the 

maximum number of features considered for each 

split. These hyperparameters were varied within 

predefined ranges, and we employed cross-validation 

to rigorously assess their impact on model 

performance. 

 

As a result of this iterative process, we were able to 

optimize our model's predictive accuracy, enhancing 

it from an initial 91% to a more robust 93%. This 

improvement underscores the model's ability to 

capture meaningful patterns in the data and make 

accurate predictions regarding traffic accident 

severity. The chosen evaluation metrics guided us in 

selecting the hyperparameter combinations that 

maximized the model's utility for our research. 

 

 
Figure 9 Confusion matrix of the " DT " model           Figure 10 Confusion matrix of the " RF " model 

 

Table 12 Matrix of confusion and performance rates 
 Predicted 

Positive Negative 

Actual True TP FN 

Actual False FP TN 

 

5.Discussion  
The contributions of this article are multifold. Firstly, 

it provides valuable insights into the factors 

influencing the severity of accidents, contributing to 

a better understanding of the problem. Secondly, it 

proposes a model that accurately forecasts accident 

severity, enabling informed decision-making and 

effective accident management procedures. Lastly, by 

evaluating different models and their performance, 

this research helps identify the most efficient 

approach for predicting accident severity, paving the 

way for further advancements in accident prevention 

and road safety. 

 

In our pursuit of developing predictive models for 

accident severity assessment, it is essential to 

acknowledge both overarching limitations and 

specific challenges that emerged during our study. 

We recognize that despite the overall efficacy of our 

models, there are nuanced scenarios where they 

encounter difficulties. One notable instance arose in 

situations where accidents transpired under 

exceptionally rare or unprecedented conditions, such 

as extreme weather events or atypical traffic patterns. 

In these cases, our models, trained on historical data, 

occasionally grappled with accurate predictions due 

to the lack of precedent within the training dataset. 

Moreover, our models faced limitations when 
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confronted with rapidly changing road conditions, 

such as unexpected road closures or construction 

activities. These dynamic variables, extending 

beyond the scope of our historical training data, 

presented challenges for real time predictions. 

Additionally, complexities emerged in cases 

involving multiple vehicles, each contributing 

distinct characteristics to the incident, making it 

challenging to pinpoint precise severity levels. 

Despite these challenges, our models continued to 

offer valuable insights in the majority of cases. These 

specific instances, however, underscore the 

importance of ongoing refinement and the integration 

of real-time data to address unique and evolving road 

safety scenarios. Furthermore, it is paramount to 

transparently acknowledge overarching limitations in 

our study, including our reliance on available data, 

which may contain inherent biases or limitations in 

terms of accuracy and coverage. The precision of our 

accident severity predictions is undeniably linked to 

the caliber and comprehensiveness of the data 

utilized for both model training and evaluation. 

Dynamic factors such as evolving road infrastructure, 

fluctuating weather conditions, and shifting driver 

behaviors inherently introduce variability into the 

prediction process. Our models' effectiveness is 

inevitably influenced by their ability to capture and 

adapt to these changing variables in real-time, which 

is an ongoing challenge. Additionally, while our 

research aims to contribute valuable insights, it 

cannot comprehensively account for all possible 

variables and scenarios that might influence accident 

severity. Factors beyond our analytical scope, such as 

specific local policies, traffic management practices, 

or unforeseen events, can also impact prediction 

accuracy. These limitations are inherent in the 

domain of accident severity prediction, and our study 

serves as a foundational step toward addressing these 

complex challenges. By transparently acknowledging 

these limitations, we strive to provide a balanced 

perspective on the capabilities and boundaries of our 

research, paving the way for future studies to build 

upon our findings and enhance the accuracy and 

applicability of accident severity prediction models. 

 

Despite these limitations, this research provides a 

valuable foundation for understanding and predicting 

accident severity, and it serves as a starting point for 

further advancements in the field. Future studies can 

build upon these findings and explore innovative 

approaches to address the identified limitations, 

ultimately striving for enhanced road safety and 

accident prevention. Our research has embraced the 

constructive feedback of this review process, leading 

to a deeper exploration of the practical implications 

arising from our findings. Our study on accident 

severity prediction carries substantial real-world 

relevance, with the RF model, in particular, 

demonstrating noteworthy potential for practical 

application in enhancing road safety measures. This 

model's ability to accurately predict accident severity 

can facilitate timely and targeted interventions, 

offering the potential to reduce the severity of 

accidents and mitigate their adverse consequences. 

Transportation authorities and emergency services 

can leverage this predictive tool to allocate resources 

more efficiently, prioritize accident response based 

on severity, and proactively address accident-prone 

areas. Furthermore, our study envisions the 

development of predictive tools that can serve as 

integral components of intelligent transportation 

systems (ITS), designed to enhance overall traffic 

management and road safety. Our research insights 

contribute to informed decision-making, offering the 

potential to save lives, reduce injuries, and curtail 

economic losses associated with road accidents. In 

essence, this work not only enriches our 

understanding of accident severity prediction but also 

opens avenues for practical implementations and 

policy recommendations, underscoring its tangible 

impact on road safety and the well-being of 

communities at large. A complete list of 

abbreviations is shown in Appendix I. 

 

Table 13 Models comparison 
 Accuracy 

(Balanced) 

Accuracy Precision  Recall  RMSE F1 score 

DT 0.560086 0.899443 0.901062 0.899443 0.293 0.900048 

RF 0.460782 0.912438 0.893591 0.912438 0.334 0.897549 

SVM 0.404189 0.902537 0.878315 0.902537 0.302 0.884959 

LR 0.342682 0.900371 0.863136 0.900371 0.182 0.873299 

 

6.Conclusion  
Accurately anticipating accident severity and 

identifying the crucial factors influencing it are 

crucial endeavours in bolstering road safety and 

curbing the incidence of fatalities and injuries arising 

from traffic accidents. The ability to predict accident 



International Journal of Advanced Technology and Engineering Exploration, Vol 10(108)                                                                                                             

1445          

 

severity, as showcased in this paper, constitutes a 

significant stride toward establishing safer and more 

sustainable transportation systems. This underscores 

the pivotal role played by data and analytics in 

shaping the future of transportation. 

 

In this paper, before investigating the different 

models of accident severity classification, the data is 

first prepared and cleaned. Data cleaning helps to 

ameliorate the models since irrelevant data affects the 

model’s performance. The different outcomes of the 

four models are analyzed and evaluated based on 

different evaluation criteria. The results indicate that, 

when compared to other models, the RF model 

exhibits superior suitability for accident severity 

prediction, initially achieving an accuracy of 91%. 

Following our rigorous hyperparameter tuning 

process, the accuracy of our RF model was further 

improved to an impressive 93%. 

 

Through the comparison of various models, a 

methodological contribution to enhance the precision 

of severity estimates can be derived from this study. 

The model devised in this study enables the 

prediction of accident severity, whether it is from 

existing models or for accidents with limited 

information that have recently transpired. Therefore, 

in future works, the proposed model can be further 

developed for real-time implementation and 

integration into existing traffic management systems. 

This would allow for the immediate prediction of 

accident severity and enable proactive response 

strategies, such as timely dispatching of emergency 

services and dynamic traffic control measures. The 

utilization of a real-time implementation model will 

enhance the advancement of accident management 

systems, leading to increased effectiveness and 

efficiency, ultimately aiming to reduce fatalities, 

injuries, and property damage caused by road 

accidents.  
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Appendix I 
S. No.  Abbreviation  Description 

1 DT Decision Tree 

2 EDA Exploratory Data Analysis 

3 FN False Negatives 

4 FP False Positives 

5 GPUs Graphics Processing Units 

6 ITS Intelligent Transportation Systems 

7 LR Logistic Regression 

8 NHTSA National Highway Traffic Safety 
Administration 

9 OECD Organisation for Economic Co-

Operation and Development 

10 OSM Open Street Map 

11 POI Points of Interest 

12 RF Random Forest 

13 RMSE Root Mean Square Error 

14 SVM Support Vector Machine 

15 TN True Negatives 

16 TP True Positives 

17 USA United States of America  

18 WHO World Health Organization 

 

 


