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1.Introduction 
The efficient transfer of information from a source to 

a destination is the primary purpose of a 

telecommunications network. Power availability and 

reliability concerns have drawn more attention due to 

the expanding use of electronic equipments in many 

sectors including data centers, transmission backhaul, 

and internet service providers (ISPs) [1].  

 

As used in network infrastructure performance, 

downtime is a metric to determine when a network, 

network segment, or network element is unavailable 

to provide service [2, 3]. More often, unplanned 

outages and throughput underperformance can have 

an enormous impact on the productivity and 

profitability of the network. 
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All downtime experienced on a network, either as a 

result of a planned or unplanned outage, tends to 

affect the overall experience of the network users [4, 

5]. 

 

A network's failure to supply or carry out its main 

function is referred to as a network outage time [6]. 

Network disruptions primarily affect customers with 

modest to high traffic, such as banks, schools, 

government agencies, private ISPs, gaming 

establishments, etc. 

 

Planned and unplanned outages are considered part of 

the outage measurement unless the system is 

allocated a maintenance window during which the 

system is not required to be in service (even though 

this is an uncommon phenomenon in regular telecom 

operations) [7].  
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Abstract  
Telecommunication network reliability remains a top priority for both customers and service providers. Downtime can 

result in revenue loss for providers and productivity loss for customers. Thus, accurately predicting downtime severity can 

help providers plan and respond effectively. This study models telecommunication network downtime severity using 

discrete-time Markov chains (DTMC). The data used consists of 1,211 daily network downtime records, in minutes, 

recorded by Ghana's national communications authority (NCA) from August 1, 2015, to April 30, 2021. The severity of 

daily downtime was categorized into 5 categories based on duration. Results indicate that the majority (n=905) of daily 

network downtime was negligible, while only 25 outages were severe. The transition probability matrix indicates that if 

the present network downtime severity is negligible, there is an 81% chance that the next network downtime severity may 

also be negligible, a 12% chance of minimal severity, a 4% chance of significant severity, a 2% chance of serious severity, 

and a 1% chance of severe severity. The steady-state distribution indicates that over the long term (n ≥ 17), 74% of 

network downtime severity is expected to be negligible, while only 2% is expected to be severe. Based on probability 

simulations for 12 steps, it is evident that the 'negligible' category is the most probable network downtime severity, 

regardless of the initial severity category. These findings can assist telecommunication providers in better planning and 

delivering more reliable services to their customers. 
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One of the crucial network performance issues is 

outage or failure, which directly relates to a network's 

availability [8]. Network component failures can 

reduce network availability and eventually lead to the 

termination of any services contract and sanctions by 

regulatory bodies due to the downtime severity.  

 

Mobile network operators (MNOs) and tower 

companies (TCs) must analyze the costs and benefits 

of service interruptions, subpar services, and the 

financial impact on their business operations to avoid 

sanctions [9]. The MNOs and TCs have made 

significant investments in assuring fast throughput 

with relatively low latency as the demand for 

network reliability rises. 

 

To reduce the negative consequences of network 

outages, telecommunications contracts are built 

around customer-centered service level agreements 

(SLAs), in which performance and operational goals 

are stated [10]. As long as clients keep their 

expectations for the requested service, SPs must 

ensure the services they offer meet the necessary 

performance objective.  

 

The performance of network availability has 

historically been measured by two key factors used 

by ISPs: network availability and dependability. 

Network dependability refers to a device or system's 

ability to perform its function without error when 

necessary, whereas network availability refers to a 

network's capability to respond to requests made by 

users of the network [11].  

 

The internet has developed into a crucial component 

of social and commercial activities. Communication 

networks must be more reliable and maintainable, 

and telecommunications providers must deliver those 

networks with high service availability [4].  

 

Network design procedures, specifications, and 

reliability metrics were established in a study by [12] 

in order to increase user satisfaction with the 

dependability of telecommunication services. The 

carrier network is used by the majority of end users 

to access services from their ISPs and application SPs 

[12]. 

 

To evaluate the network's performance over a given 

time period and across a range of user ages, an 

impact metric was developed [13]. The authors of 

[14] proposed a more robust mobile network by 

concentrating on preventing downtime and achieving 

complete network availability in disturbance 

situations like accidents, natural catastrophes, etc. 

The international telecommunication union (ITU) 

defines the quality of service (QoS) as the entirety of 

a telecommunications service's features that have an 

impact on its capacity to meet the explicit and 

implicit needs of the service user [15]. Utilizing data 

traffic management technology is a must for high 

QoS investments in order to reduce network jitter, 

delay, and packet loss. Setting priorities for particular 

web data types allows QoS to regulate and manage 

network resources [6].  

 

The authors in [16] focused on some parameters such 

as call set-up success rate (CSSR), call drop rate 

(CDR), network capacity, and bit error rate (BER) to 

measure the QoS for a network. Service quality can 

be assessed using the most relevant key performance 

indicators (KPIs) and key quality indicators (KQIs) 

for cellular networks and services [17, 18].  

 

ITU defines the SLA as a written agreement between 

two or more entities that are concluded during a 

negotiation exercise with the aim of evaluating the 

service features, obligations, and priorities of each 

component [19]. 

 

Constantly improving QoS in the network is very 

important as it eliminates downtime and enhances 

customer experience. Outages will cause the 

telecommunications sector to lose money and provide 

poor QoS, especially while the 5th generation (5G) 

network is being deployed [20].  

 

SLA is a goal that all MNOs, TCs, and SPs must 

reach. SLA is a legal agreement that outlines the 

level of service that will be offered between SPs and 

tenants or between only SPs [13]. SLA shall include 

a specific number of elements, which are called 

metrics of the service object. SLA shall contain 

technical, economic, and legal statements that cover 

every topic that should be discussed and agreed upon 

between the SPs and the tenants [9, 21].  

 

For accountability of varying network conditions and 

varying user behavior over several slices, SLA 

administration should be automated in order to 

evaluate performance and accurately characterize the 

QoS [22].  

 

The primary essence of regulators in the 

telecommunication industry is to control downtime 

and ensure that high-quality service is rendered by 

the SPs or the MNOs to the customers. In Ghana, the 

national communication authority (NCA) has 
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stringent regulatory targets to which MNO and TCs 

are obliged to adhere, otherwise will be faced with 

sanctions as stated in the NCA QoS regulations draft. 

In the event of downtime, the SPs shall notify the 

authority and affected customers in any locality 

within an hour of any service degradation or outage, 

which may extend beyond an hour [23]. MNOs and 

TCs must ensure network reliability through suitable 

operational and maintenance processes [24]. 

 

Telecommunication networks' dependability is 

increased by effective operational divisions 

cooperating for better results. The network 

monitoring centre (NMC), and operations assurance 

are the key operations divisions required for higher 

SLA. 

 

A network operations center (NOC) is where 

company information technology (IT) administrators 

monitor and maintain telecommunications networks 

[25]. It is a room containing equipments that shows 

network visualizations. The NOC manages and 

optimizes business-critical functions, including 

network troubleshooting, software delivery, and 

updating for such enterprises. Passive alarms are 

monitored by a specified external alarm or a remote 

monitoring system (RMS). Main failure (MF), site on 

batteries (SOB), the generator failed to start (GFS), 

and site on hybrid (SOH) can be monitored through 

the NOC [16, 26]. 

 

Operations assurance engineers are the core of 

decision-making and the momentum behind 

infrastructure engineering in the telecom industry.  

The output of the operational assurance heavily 

influences whether or not an MNO will succeed in 

the set network availability and QoS of the NCA. 

 

In order to model the severity of the downtime 

experienced by Ghanaian telecommunication 

networks, this study adds to the body of knowledge 

on telecommunication network downtime by 

employing discrete-time Markov chains (DTMC). 

This approach was chosen because of the ease of use 

and the accuracy of out-of-sample forecasting offered 

by Markov chain models. 

 

The rest of the paper is organized as follows; a 

review of relevant literature is presented in section 2, 

the methodology is presented in section 3, section 4 

contains the results and key findings of the study, 

section 5 contains the discussion of findings, and 

section 6 contains the conclusions and directions for 

future research. 

2.Literature review  
One of the major elements determining customer 

turnover rate and one that can have a significant 

impact on network downtime is client retention. The 

efficient conveyance of information from source to 

destination is the main purpose of a 

telecommunications network.  Telecommunication 

network customers may decide to quit a business if it 

cannot serve them with exceptional service around-

the-clock (also known as attrition). If this occurs too 

frequently, the revenue loss will impact the 

company‟s stability in a highly competitive market 

[26, 27].  

 

A simulation study was conducted by [28, 29] with 

the goal of determining how a constrained network 

architecture would function in terms of coverage and 

capacity in the presence of a mobile network. SPs 

employ some quantitative metrics to understand the 

frequency of outages and the speed at which the 

network is restored, such as mean time to recovery 

(MTTR), mean time to acknowledge (MTTA), mean 

time to failure (MTTF), and mean time before failure 

(MTBF) [30]. 

 

MTBF, which is the average amount of time between 

two failures, is one of the crucial variables in 

availability measurement. The average time for repair 

and testing is known as the mean time to repair [31]. 

The loss of business continuity, employee 

productivity, income, and customer goodwill are the 

actual costs of network failures to an organization 

according to a study in the Cisco white paper on 

network availability [31]. 

 

Using data from the network management system 

(NMS), a new approach based on uptime sensor 

downtime was suggested.  The new approach tracks 

the duration of a device's uptime over time to 

evaluate service level precisely and impartially. It 

offers a range of distinctive visuals for every sort of 

failure, including transmission and power loss. The 

technique offers a notable increase in service level 

percentage. In contrast, the prior system, which was 

based on ping downtime, provided a 56% service 

level in a simulated test, while the new process 

provided a 97.5% service level [30, 31].  

 

The Weibull reliability growth model also referred to 

as the power law model was applied to outage data 

by [32] to determine if the system was getting worse 

or better. The study showed that the intensity 

function increases when the scale parameter (β) is 

more than 1, indicating that failures are likely to 
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happen more frequently. On the other hand, the 

system will operate more effectively when the 

intensity function is 1 [32].  

 

A parallel system equipment availability model was 

also developed by [32] in order to control expected 

service performance and achieve steady-state outage 

channel signal network access. The Markov 

processes with related negative exponential failure 

and restoration time distribution were considered to 

represent the model's two states [32].  

 

In a study by [33], a fresh version of the queuing 

model was used to depict systems with rework and 

process downtime. It was emphasized that rigorous 

comparisons between the queuing model and discrete 

event simulation (DES) must be made under a variety 

of conditions, including changing rework rates, 

arrival variability, and process downtime. In every 

scenario, the queuing model showed promise for 

calculating lead time [33]. The NMS data was used to 

calculate the SLA based on uptime sensor downtime 

[33]. The novel approach created in their study 

measures the duration of a device's uptime over time 

and offers distinctive visuals for various failure types, 

such as transmission or power failure. This made it 

possible to calculate service levels in a trustworthy 

and neutral manner [33]. 

 

In a study by [34], the efficiency of low-latency 

video streaming in a real standalone 5G test 

environment was evaluated  with a particular focus 

on uplink latency using user datagram protocol 

(UDP) and transmission control protocol (TCP). The 

results gathered from their extensive set of evaluation 

with test cases indicate that 5G standalone with the 

right uplink-to-downlink duration ratio has the 

potential for low latency streaming and delay 

variation stays relatively satisfying level even in 

congested network scenarios. Also, on the efficiency 

of service and data handoff protocols in edge 

computing systems, their results showed that by 

being proactive, the service interruption downtime 

reduces by a factor of 4 times. 

 

Conducted a reliability analysis of time slotted 

channel hopping (TSCH) protocol in a mobile 

scenario [35]. Their evaluation was performed 

through simulation and the results showed that 

mobility may cause significant network downtime 

where nodes are unable to associate with the network 

for a long period of time because of synchronization 

loss, especially if the environment is not fully 

covered by static nodes. Also, [36] developed a new 

framework for mobile edge caching by proposing 

flexible user in heterogeneous cellular networks. 

Their simulation results indicated that their proposed 

framework significantly decreases the system model's 

average delivery delay, which can help the network 

maintain its QoS in network peak-traffic duration. 

 

Developed an intelligent data fusion algorithm based 

on hybrid delay-aware adaptive clustering in wireless 

sensor networks. Their simulation results showed 

that, compared with the existing delay-aware models, 

the proposed scheme can effectively reduce the 

network delay, and network energy consumption, and 

extend the network lifetime simultaneously [37]. 

Leveraged large-scale domain name system (DNS) 

measurement data on authoritative name servers to 

study the reactions of domain owners affected by the 

2016 dynamic distributed denial of service (DDoS) 

attack [38]. They used industry sources of 

information about domain names to study the 

influence of factors such as industry sector and 

website popularity on the willingness of domain 

managers to invest in high availability of online 

services. Their results can inform managed DNS and 

other network SPs regarding the potential impact of 

downtime on their customer portfolio. In a study by 

[39], a new hybrid clustering protocol (HCP) was 

proposed. The new protocol consisted of two main 

phases; cluster formation and data forwarding. They 

simulated HCP and compared its performance with 

low-energy adaptive clustering hierarchy (LEACH) 

and threshold low-energy adaptive clustering 

hierarchy (T-LEACH). Their results showed a 

reduction in network power consumption and an 

increase in the network lifetime by 30%. 

 

Despite the extensive research on telecommunication 

network downtime as reviewed above, only a few 

studies focused on downtime duration and severity. 

Furthermore, the few studies that focused on 

downtime duration and severity used complex 

mathematical and statistical models which are 

difficult to understand. Considering the simplicity 

and the out-of-sample forecasting accuracy of 

Markov chain models, this study contributes to the 

literature on telecommunication network downtime 

by using DTMC to model the downtime severity of 

telecommunication networks in Ghana.  

 

3.Methods 

3.1Data 

The data used in this empirical study consist of 1,211 

total daily network downtime, in minutes, recorded 

by the NCA of Ghana, spanning the period August 
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01, 2015, to April 30, 2021. The severity of the daily 

downtime data was categorized into 5 categories, 

depending on the duration of the downtime (Table 1). 

 

Table 1 Severity of network downtime categories 

Downtime Duration (in 

minutes) 

Severity Category 

Less than 200 Negligible 

Between 200 and 400 Minimal 

Between 400 and 600 Significant 

Between 600 and 800 Serious 

Greater than 800 Severe 

 

3.2Block diagram for the overall network 

downtime duration 

The overall network downtime duration can be 

broken down into single steps of events as shown in 

Figure 1. The overall downtime duration actually 

starts from the time a fault is reported to the time all 

network is restored. The time between when a fault is 

captured to the time when all network is restored is 

termed as the measured outage duration [40]. The 

measured outage duration includes the dispatch time 

(the time when the call has been logged on the 

system through customer reporting or through remote 

terminal unit (RTU) alarms at the station and the 

operator has been advised to travel to the site), the 

travel time (the time for an operator to travel to the 

site), the sectionalizing time (network is partially 

restored during this period through back feeding and 

network reconfiguration), the fault finding time (the 

time an operator is doing a visual inspection of the 

components with the intent of identifying the faulted 

equipment), the repair time (the time to repair the 

faulted equipment), and the restore time (the time for 

the network to return to its original state) [40]. 

 

 
Figure 1 Key components of overall network downtime duration 

 

3.3Discrete-time Markov chain (DTMC) model 

Markov chains are stochastic models used mainly for 

the analysis of stochastic processes [41]. There are 

basically two types of Markov chains; discrete-time 

and continuous-time Markov chains. The choice of 

either discrete-time or continuous-time Markov chain 

largely depends on the nature of the time series data 

involved. The DTMC is used in this application since 

the data consists of discrete network downtime 

severity in Ghana. Mathematically, a DTMC is 

defined as a sequence of random variables        , 

which is characterized by the Markov property. The 

Markov property, also known as the memoryless 

property states that the distribution of the next 

variable (    ) depends only on the value of the 

current variable (  ) and not any of the previous 

variables (              ). This definition is 

presented in Equation 1. 

 (                             )  
 (               )  (1) 

 

The state space of the Markov chain is the set of all 

possible states   *          + of   , which can be 

finite or countably infinite. In this study, the state 
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space consists of the 5 categories of network 

downtime severity classified based on the duration of 

the network downtime (see Equation 2). 

S = {Negligible, Minimal, Significant, Serious, 

Severe}     (2) 

 

The Markov chain transitions from one state (say   ) 
to another state (say   ) with probability     in one 

step, known as the transition probability (see 

Equation 3): 

     (           )  (3) 

 

The probability of transitioning from state   to   in   

steps is shown in Equation 4. 

   
( )
  (           )  (4) 

 

When no change in the underlying transition 

probabilities is observed even as time changes, then 

the Markov chain is said to be time-homogeneous. A 

DTMC exhibits temporal homogeneity if Equation 5 

holds. 

 (             )    (             ) 

     (5) 

If the DTMC exhibits temporal homogeneity, then 

the one-step and n-step transition probabilities are 

respectively given as;  

     (             ) and    
( )
 

 (             ), where     

 

Each element,    , of the transition probability matrix 

is computed using Equation 6, where     represents 

the observed frequency of one-step transitions from 

state   to state   in the historical data. 

    
   

    
     

    (6) 

To check whether the sequence of events in the given 

data follows the Markov property with   states, we 

use the Chi-square (  ) test statistic with (   )  

degrees of freedom, as shown in Equation 7. 

     
      

      
  

(       )
 

   
   (7) 

 

where     and     are the observed and expected 

transition frequencies respectively [42]. The expected 

transition frequency (   ) is computed using Equation 

8. 

    
(    
     )(    

     )

(    
      

     )
   (8) 

 

To investigate the long-term behavior of a Markov 

chain, we use the stationary distribution. The 

stationary or steady state distribution of the Markov 

chain in this study shows the long-term proportion of 

time each cause of network outage spends in a 

specific state. 

  

4.Results  
4.1Descriptive statistics 

A detailed description of the data used for this study 

is presented in Tables 2 and 3. The measures of 

central tendency are contained in Table 2 while the 

measures of dispersion are presented in Table 3. It is 

obvious from Table 2 that the majority (n=905) of the 

daily network downtime recorded was negligible 

while only 25 of the outages were severe. 184, 59, 

and 38 of the recorded daily network downtime were 

minimal, significant, and serious respectively. The 

downtime data were however not normally 

distributed, considering the huge differences in the 

various measures of central tendency (mean, median, 

5% trimmed mean). 

 

Table 2 Measures of central tendency 

  N Mean Median 5% trimmed mean 

Negligible 905 70.45 54 65.37 

Minimal 184 277.31 268.5 273.83 

Significant 59 504.29 508 504.90 

Serious 38 676.34 663.5 672.94 

Severe 25 6241.28 998 1102.71 

 

Table 3 contains the measures of dispersion for the 

downtime severity data used in this study. The large 

standard deviation (SD) and mean absolute deviation 

(mad) values indicate that there is a lot of variation in 

the observed network downtime data around the 

mean. This, therefore, means that the observed 

network downtime data is quite spread out in terms of 

severity. 
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Table 3 Measures of dispersion 

 

4.2DTMC model 

We started by determining if the sequence of the 

network downtime severity data we gathered adhered 

to the Markov property. Table 4 displays the results 

of the Chi-square test on several contingency tables 

created from the order of events (network downtime 

severity). Large p-values indicate that the null 

hypothesis of the sequence following the Markov 

property should not be rejected. Therefore we fail to 

reject the null hypothesis that our data on network 

downtime severity follows the Markov property since 

the p-value is greater than 0.05 (Table 4). Hence, we 

can proceed to perform a Markov chain analysis on 

our data. 

 

Table 4 Testing Markovian property 

Chi-square 

statistic 

Degrees of 

freedom 

p-value 

108.32 66 0.72 

 

The next step in DTMC modeling, after testing the 

Markov property, is to generate the transition 

probability matrix. The state transition probability 

matrix presented in Table 5, gives the probabilities of 

transitioning from one state to another in a single 

time unit. In this case, the possibilities of moving 

from one category of downtime severity to another 

within a single time unit are provided by the 

transition probability matrix. Several interesting 

revelations are presented in the transition probability 

matrix. Firstly, the probabilities in Table 5 reveal that 

when the present network downtime severity is 

negligible, then there is an 81% chance that the next 

network downtime severity will still be negligible, a 

12% chance that the next network downtime severity 

will be minimal, 4% chance that the next network 

downtime severity will be significant, 2% chance that 

the next network downtime severity will be serious, 

and 1% chance that the next network downtime 

severity will be severe. Also, when the present 

network downtime severity is minimal, then the 

probabilities that the next network downtime severity 

will be negligible, minimal, significant, serious, and 

severe are 59%, 25%, 6%, 6%, and 4% respectively. 

Furthermore, when the present network downtime 

severity is significant, then the probabilities that the 

next network downtime severity will be negligible, 

minimal, significant, serious, and severe are 49%, 

29%, 5%, 9%, and 8% respectively. When the 

present network downtime severity is serious, then 

the probabilities that the next network downtime 

severity will be negligible, minimal, significant, 

serious, and severe are 55%, 19%, 18%, 8%, and 0% 

respectively. Finally, when the present network 

downtime severity is severe, then there is a 32%, 

24%, 2%, 8%, and 16% chance that the next network 

downtime severity will be negligible, minimal, 

significant, serious, and severe respectively (Table 5). 

 

For easy understanding of the transition probability 

matrix in Table 5, the transition matrix, which gives 

the probabilities of transitioning from one network 

downtime severity category to another is presented 

diagrammatically in Figure 2. The circular arrows 

indicate the probability of transitioning from one 

downtime severity category to itself, while the 

directional arrows give the probability of 

transitioning from one downtime severity category to 

the other. 

 

Table 5 Transition probability matrix for the network downtime severity 

 Neg. Min. Sig. Ser. Sev. 

Negligible (Neg.) 0.81 0.12 0.04 0.02 0.01 

Minimal (Min.) 0.59 0.25 0.06 0.06 0.04 

Significant (Sig.) 0.49 0.29 0.05 0.09 0.08 

Serious (Ser.) 0.55 0.19 0.18 0.08 0 

Severe (Sev.) 0.32 0.24 0.2 0.08 0.16 

 

 

 

  sd mad min max 

Negligible 50.47 45.96 2 197 

Minimal 54.03 56.34 200 399 

Significant 60.42 77.10 402 599 

Serious 52.71 44.48 602 788 

Severe 25439.91 228.32 813 128336 
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Figure 2 Transition probability diagram for the network downtime severity 

 

The steady state distribution for the network 

downtime severity Markov chain is presented in 

Table 6. Also known as the stationary distribution, in 

the Markov chain, the steady state distribution is a 

probability distribution that doesn't vary over time. 

This indicates that in the long run (n ≥ 17), 74% of 

the network downtime severity will be negligible 

while 16% of the network downtime severity will be 

minimal. In addition, in the long run, 5%, 3%, and 

2% of the network downtime severity will be 

significant, serious, and severe respectively (Table 5). 

We can also see how the probabilities change as the 

number of steps rises using the DTMC model created 

in this study to compare the actual number of steps. 

So, we calculated the likelihood of a network 

downtime. severity for 12 steps. From the plots in 

Figures 3 – 7, it seems apparent that the most likely 

network downtime severity category is „negligible‟, 

irrespective of whether the initial network downtime 

severity is negligible, minimal, significant, serious, or 

severe. However, the likelihood decays with time. 

 

Table 6 Steady state distribution 

Downtime severity category Limiting probabilities 

Negligible 0.74 

Minimal 0.16 

Significant 0.05 

Serious 0.03 

Severe 0.02 
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Figure 3 12-Step chain probability predictions when initial network downtime severity is „Negligible‟ 

 

 
Figure 4 12-Step chain probability predictions when initial network downtime severity is „Minimal‟ 

 

 
Figure 5 12-Step chain probability predictions when initial network downtime severity is „Significant‟ 

 



International Journal of Advanced Technology and Engineering Exploration, Vol 10(101)                                                                                                             

435          

 

 
Figure 6 12-Step chain probability predictions when initial network downtime severity is „Serious‟ 

 

 
Figure 7 12-Step chain probability predictions when initial network downtime severity is „Severe‟ 

 

5.Discussion  
The implications of this study are quite clear. The 

results reveal that the majority (n=905) of daily 

network downtimes recorded were negligible, while 

only 25 outages were severe. Of the recorded daily 

network downtimes, 184, 59, and 38 were classified 

as minimal, significant, and serious, respectively. The 

study's results indicate the network's availability and 

dependability, which every operator of a 

telecommunications network wants to ensure [43]. 

The amount of network downtime demonstrates the 

effectiveness of preventative maintenance, which 

increases the lifespan of telecommunications 

equipment and generates high revenue. Telecom 

providers can reduce network downtime by adhering 

to industry best practices for energy supply [44, 45]. 

This research finding suggests that while most of the 

recorded incidents of telecommunication network 

downtime are not severe and have little impact on 

users, there are still a few incidents that are severe 

enough to cause disruptions and affect users' ability 

to access communication services. 

 

There could be several reasons why most recorded 

downtime incidents are negligible. One possible 

explanation is that telecommunication network 

providers have implemented robust infrastructure and 

backup systems to minimize the risk of service 

disruptions. Additionally, advancements in 

technology and network monitoring tools may have 

enabled providers to detect and address issues 

quickly before they escalate into severe downtime 

[45]. It is worth noting that although most downtime 

incidents may be negligible, they can still have a 

cumulative impact on the overall network's 

reliability. Therefore, telecommunication network 

providers must continue to closely monitor their 

systems and invest in infrastructure upgrades and 

maintenance to minimize the risk of downtime, even 

for relatively minor incidents [44]. 
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Secondly, the results reveal that when the present 

network downtime severity is negligible, then there is 

an 81% chance that the next network downtime 

severity will still be negligible, a 12% chance that the 

next network downtime severity will be minimal, 4% 

chance that the next network downtime severity will 

be significant, 2% chance that the next network 

downtime severity will be serious, and 1% chance 

that the next network downtime severity will be 

severe. The analysis reveals a very low severity of 

downtime, which should be the goal of every MNO, 

as well as a minimal level of call drop, excellent 

QoS, low operational costs, and good profitability 

[46, 47]. 

 

This research finding suggests that when the present 

network downtime severity is negligible, there is a 

high probability (81%) that the severity of the next 

network downtime incident will also be negligible. 

This implies that most telecommunication network 

downtime incidents are not likely to escalate into 

severe or serious incidents. 

 

The research finding further suggests that if there is 

another downtime incident after a negligible incident, 

there is a 12% chance that it will be minimal, 

meaning that it will cause minor disruptions but not 

severely impact users. Additionally, there is a 4% 

chance that the next downtime incident will be 

significant, meaning that it will cause moderate 

disruptions that may affect a significant number of 

users. There is a 2% chance that the next downtime 

incident will be serious, meaning that it will cause 

significant disruptions that may affect a large number 

of users. Finally, there is only a 1% chance that the 

next downtime incident will be severe, meaning that 

it will cause a complete service outage for an 

extended period. 

 

It is important to note that while the probability of a 

severe downtime incident is low, it is not impossible. 

Telecommunication network providers must remain 

vigilant in monitoring their systems and addressing 

even minor incidents promptly to minimize the risk 

of severe downtime incidents [46]. This research 

finding provides valuable insights into the likelihood 

of various levels of downtime severity in 

telecommunication networks. It emphasizes the 

importance of proactive measures and infrastructure 

upgrades to prevent downtime and ensure 

uninterrupted access to essential communication 

services. 

 

Furthermore, the DTMC's steady state distribution 

shows that in the long term (n ≥ 17), 74% of the 

network downtime severity will be negligible while 

16% of the network downtime severity will be 

minimal. In addition, in the long run, 5%, 3%, and 

2% of the network downtime severity will be 

significant, serious, and severe respectively. The 

steady-state distribution of the DTMC outcome 

demonstrates that the MNO possesses a reliable 

network and is in compliance with all of the NCA, 

FCC, and ITU network QOS standards [47, 48]. To 

determine the impact of network downtime and 

reliability, evaluating the severity of individual 

outages and the network's overall performance over 

time is essential [10, 6, 49]. 

 

The finding that 74% of network downtime incidents 

will be negligible in the long term is consistent with 

the idea that telecommunication network providers 

have implemented robust infrastructure and backup 

systems to minimize the risk of service disruptions. 

This suggests that most minor incidents are quickly 

resolved before they escalate into more severe 

downtime incidents. 

 

The finding that 16% of network downtime incidents 

will be minimal indicates that some incidents may 

cause minor disruptions that can be quickly resolved 

but may still affect users' ability to access 

communication services. This highlights the 

importance of prompt incident response and effective 

communication with users to manage their 

expectations and minimize the impact of downtime 

incidents [50]. This research finding provides 

valuable insights into the long-term distribution of 

network downtime severity in telecommunication 

networks. It underscores the importance of 

continuous monitoring and proactive measures to 

minimize downtime incidents and ensure 

uninterrupted access to essential communication 

services [50, 51]. 

 

5.1Limitations 
The study's main limitation is that the downtime data 

used is not system-based; instead, the majority of it is 

determined by the NOC engineer. Weak network 

connections also impact remote monitoring software, 

and some alarms are discarded, resulting in data loss 

that may alter the study's findings. Furthermore, the 

categorizations of downtime are also founded on field 

experience. Another limitation concerns the DTMC 

model. The DTMC only depends on the current state 

to determine the probability of transitioning to the 

next state, and not on any previous states. This means 
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that the future state is independent of the past states 

given the present state. A complete list of 

abbreviations is shown in Appendix I. 

 

6.Conclusion and future work 
In this paper, we utilized a DTMC to model and 

analyze the severity of downtime in 

telecommunication networks in Ghana. The duration 

of downtime was categorized into 5 levels based on 

severity: negligible, minimal, significant, serious, and 

severe. Descriptive statistics revealed that the 

majority (n=905) of daily network downtime was 

negligible, while only 25 of the outages were severe. 

The transition probability matrix showed that when 

the current network downtime severity is negligible, 

there is an 81% chance that the next severity will also 

be negligible, a 12% chance of minimal, a 4% chance 

of significant, a 2% chance of serious, and a 1% 

chance of severe. The steady-state distribution 

indicated that in the long run (n ≥ 17), 74% of the 

network downtime severity will be negligible, while 

only 2% will be severe. We also simulated the 

probabilities of network downtime severity for 12 

steps and found that the most likely severity category 

was "negligible," regardless of the initial severity 

category. The study's DTMC model was simple and 

accurate in out-of-sample forecasting. Future 

research may compare the results of continuous-time 

Markov chains (CTMC) and DTMC for predicting 

telecommunication downtime duration. 
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Appendix I 
S. No. Abbreviation Description 

1 5G 5th Generation 

2 BER Bit Error Rate  

3 CDR Call Drop Rate  

4 CSSR Call Set-Up Success Rate  

5 CTMC Continuous-Time Markov Chains 

6 DES Discrete Event Simulation 

7 DTMC Discrete-Time Markov Chain  

8 DDoS Distributed Denial of Service 

9 DNS Domain Name System 

10 GFS Generator Failed to Start  

11 HCP Hybrid Clustering Protocol 

12 IT Information Technology 

13 ITU International Telecommunication 

Union  

14 ISPs Internet Service Providers  

15 KPIs Key Performance Indicators  

16 KQIs Key Quality Indicators  

17 LEACH Low Energy Adaptive Clustering 

Hierarchy 

18 MF Main Failure  

19 MTBF Mean Time Before Failure  

20 MTTA Mean Time to Acknowledge  

21 MTTF Mean Time to Failure  

22 MTTR Mean Time to Recovery  

23 MNOs Mobile Network Operators  

24 NCA National Communication 
Authority  

25 NMS Network Management System  

26 NMC Network Monitoring Centre  

27 NOC Network Operations Center 

28 QoS Quality of Service  

29 RMS Remote Monitoring System  

30 RTU Remote Terminal Unit 

31 SLAs Service Level Agreement  

32 SPs Service Providers  

33 SOB Site on Batteries  

34 SOH Site on Hybrid  

35 T-LEACH Threshold Low Energy Adaptive 

Clustering Hierarchy 

36 TSCH Time-Slotted Channel Hopping 

37 TCs Tower Companies  

38 TCP Transmission Control Protocol 

39 UDP User Datagram Protocol 

 

 

 


