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1.Introduction 
The World Health Organisation (WHO) proclaimed 

the COVID-19 pandemic in response to the 

appearance of a novel coronavirus in Wuhan, China, 

in December 2019[1]. This public health crisis has 

caused global concern, significantly impacting the 

economy, and healthcare systems [2]. According to a 

medical research article [3], the rapid spread of the 

COVID-19 epidemic has posed a challenge for 

physicians in differentiating it from typical respiratory 

symptoms, leading to misdiagnosis among patients 

with pneumonia who exhibit similar symptoms. A 

critical step in combating this global epidemic is the 

prompt and reliable detection and treatment of 

COVID-19-infected patients [4]. 
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The reverse transcription-polymerase chain reaction 

(RT-PCR) test is the most used for COVID-19 

detection [5–6]. However, a study published in [7] 

indicates that RT-PCR can yield false negative (FN) 

results in cases where patients have a lower viral load 

at the initial stage, when the composition of the sample 

inhibits chemical action, or due to laboratory errors. 

Therefore, detecting COVID-19 solely with RT-PCR 

is not advisable. X-rays and computed tomography 

(CT) scans of the chest are most effective modalities 

in identifying the morphological patterns of lung 

lesions associated with COVID-19 compared to other 

diagnostic methods such as RT-PCR [8]. The study 

recommends the use of imaging techniques as an 

important tool for early and accurate COVID-19 

diagnosis, particularly when RT-PCR results are 

inconclusive or negative. However, it is important to 

note that CT scans have a higher risk of spreading 

COVID-19, along with longer scan duration, high 

radiation doses, and higher costs, making chest 

Research Article 

Abstract  
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radiography the most comprehensive and cost-

effective diagnostic tool for COVID identification [9]. 

Nevertheless, manual interpretation of chest 

radiography is slow and prone to human interpretation 

errors. Since COVID-19, pneumonia, and other types 

of lung abnormalities are observed with same 

characteristics, their reliability is questionable [10]. 

Considering these limitations, there is a need for the 

healthcare system to develop alternative methods 

using computational intelligence tools for COVID-19 

detection along with additional lung infections. 

 

With significant advancements in the image 

processing area, it has garnered attention of 

researchers, leading to the development of cost-

effective and technologically accepted architectures 

without compromising accuracy. Recently, deep 

convolutional neural network (DCNN) models have 

emerged as powerful tools, with various algorithms 

and architectures being developed [11–14]. The 

convolutional neural network (CNN) models facilitate 

the analysis of large amounts of data and utilization of 

advanced algorithms, offering solutions to complex 

clinical problems. The remarkable performance of 

CNNs in disease diagnosis provides a solid foundation 

for their utilization in the diagnosis of threatening 

COVID-19 diseases. This technology offers patients a 

unique opportunity to receive a prompt, safe, and cost-

effective diagnosis. 

 

The acceptance of deep CNNs and their promising 

results in COVID-19 detection have prompted 

significant interest. However, several challenges need 

to be addressed in order to maximize their potential. In 

a study [15], the authors discussed some of the 

challenges associated with utilizing DCNNs for 

COVID-19 detection. These challenges include 

scarcity of large and diverse datasets, the need for 

expert knowledge in designing and fine-tuning 

network architectures, and interpretability of a 

network's decision. Furthermore, the quality of the 

input images and the existence of confounding factors 

affect DCNN performance. Another challenge, as 

highlighted in the research article [16], is the issue of 

imbalanced data when using CNNs for COVID-19. 

The limited availability of positive cases compared to 

abundance of negative cases results in imbalanced 

datasets, which introduce bias in the learning process 

and affect the accuracy of the CNNs. To mitigate this, 

the authors discuss various techniques, such as 

oversampling, under-sampling, and cost-sensitive 

learning, to address the imbalanced data problem. In a 

case study [17], the authors point out another 

challenge related to the limited COVID-19 datasets, 

which is the risk of overfitting when using DCNNs. To 

overcome this issue, the authors propose the use of 

data augmentation techniques.  

 

Selecting an optimal model from the multitude of 

options available in the domains of machine learning 

(ML) and deep learning (DL) poses a challenging and 

time-consuming task. Although extensive research has 

been conducted on several traditional methods in these 

fields, there is still potential for further improvement. 

However, enhancing these methods may present 

significant technical challenges [18]. 

 

Under the information technology enabled services 

policy of the Government of India, the Department of 

Science and Technology (DST) granted a high 

computing center at   Information Technology 

Department of Vishwakarma Government 

Engineering College, Chandkheda. The experiments 

utilized the same resources for data processing. Our 

research aims to enhance the current performance 

metrics of DL while also incorporating local web 

deployment of the trained model. This will improve 

access to the computer-aided diagnosis (CAD) system 

from remote locations, resulting in a more effective 

and efficient disease detection system. To address the 

challenges associated with imbalanced data sets and 

other related issues, several techniques were 

employed. These techniques included data 

augmentation, transfer learning (TL) with tuning for 

overfitting, and resampling.  

 

The proposed work aims to assess the efficacy of CNN 

in detecting COVID-19 using chest X-rays. The 

research focuses on assessing effectiveness of three 

different approaches: a scratch CNN architecture, pre-

trained models with TL, and TL with fine-tuning. 

These approaches are utilized to categorize chest X-

ray images into two distinct groups: COVID-19-

infected and normal. Various performance metrics, 

including accuracy, F1 score, precision, recall, and 

area under the curve (AUC), are employed to analyse 

models. The results obtained from each approach are 

compared to determine their relative effectiveness. 

 

Our work makes several contributions: 

1. Development of an effective DL model for COVID-

19 screening from chest X-rays 

2. Comparison of CNN models built from scratch and 

various pre-trained models to identify the most 

efficient CNN model for predicting COVID-19 

disease 

3. Investigation of the impact of hyperparameters and 

dataset size on model performance 
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4. Optimization of model parameters to provide 

intelligent solutions for accurate COVID-19 

detection 

 

This research article is structured into different 

sections. Section 2 provides a literature review that 

examines previous research on DL methods for 

COVID-19 diagnosis. Section 3 covers the proposed 

method for developing a DL model specifically 

designed for COVID-19 screening. This section also 

outlines various approaches utilized to enhance 

performance. Section 4 is dedicated to discussing the 

results and discussion of the study. Finally, the 

conclusion summarizes the findings and presents 

potential future directions for further research. 

 

2.Literature review  
DL is commonly used in medicine for disease 

classification and CAD [1924]. CNNs capability of 

extracting features from images makes them most 

suitable for such tasks [24], and they have 

demonstrated comparable or superior performance to 

trained radiologists [22–24]. TL has also proven 

effective in DL applications as it leverages pre-trained 

networks from various domains, reducing the time and 

resources required to achieve high performance [25]. 

The emergence of COVID-19 and its global impact 

have spurred the development of DL based COVID-

19 CAD using different imaging modalities. 

 

Yang et al. [23] evaluated multiple pre-trained CNN 

models, including visual geometry group-16 (VGG-

16), DenseNet-121, residual network-50 (ResNet-50), 

and ResNet-152, to create a COVID-19 binary 

classification system using CT scans. They utilized the 

fast ResNet framework to select the optimal model 

architecture, pre-processing techniques, and training 

settings. The results demonstrated 96% accuracy in 

binary classification, with an F1 score of 96%. 

However, it is important to note that the study is 

limited to the use of CT scans. Additionally, the 

dataset employed in the study is relatively small, 

consisting of only 618 images, which may impact the 

generalizability of the findings.  

 

The study presented by Toraman et al. [24] utilizes 

capsule network (CapsNet) CNN for both binary and 

multiple category classification applications. The 

dataset used in the experiment consisted of 1050 x-ray 

images for each class. To evaluate the performance, a 

tenfold cross-validation technique was utilized, 

yielding an accuracy score of 97% and 84% for binary 

multi-class classification respectively. However, the 

study had certain limitations, including a relatively 

small dataset and the absence of an external validation 

dataset.  

 

He et al. [25] presented sample-efficient DL 

techniques for accurate COVID-19 diagnosis using 

CT images. They introduced a novel training strategy 

that addresses data imbalances and optimizes model 

performance across various metrics, even with a 

limited number of training images. Specifically, they 

proposed a method called Self-Trans, which combines 

TL and contrastive self-supervised learning. Using this 

technique, 90.63 % accuracy score was obtained with 

a small number of CT images for training. However, 

one limitation of their study is that the dataset was 

collected from a single hospital in China, which 

restricts the generalizability of the model to other 

populations. 

 

Kassania et al. [26] compared the performance of 

seven distinct pre-trained DL architectures using TL 

for the categorization of COVID-19 versus pneumonia 

using both CT and X-ray images. The images 

underwent preprocessing and augmentation before 

being fed to the network. Among all seven DL models, 

Inception-ResNetV2 achieved the highest accuracy of 

92.18%. However, the study had several limitations. 

First, the dataset used in the study was relatively small, 

comprising only 349 CT scans and 331 X-rays. The 

small size of the dataset in the current research limits 

the generalizability of its results. Additionally, study 

lacks a detailed analysis of false positive (FP) and FN, 

which are crucial aspects of medical diagnosis. 

 

To assess the impact of the convolutional layer count 

in a scratch CNN model, Basha et al. [27] developed 

three different CNN models with varying numbers of 

convolutional layers. They compared the 

performances of these models with pretrained 

architectures. Surprisingly, the model with only four 

convolutional layers achieved an impressive accuracy 

of 97.5 % surpassing the performances of the three and 

five-convolutional layer models. 

 

Haque et al. [28] suggested an algorithm for 

classifying normal, COVID-19, and pneumonia using 

chest radiographs. They employed a fusion approach, 

combining ResNet-101 and ResNet-151, and 

improved the dynamic weight ratio to elevate this 

model's performance. During the testing phase, the 

model demonstrated a remarkable accuracy of 96.1 %. 

 

A novel CNN model called COVID-Net was built by 

Wang et al. [29] for diagnosing COVID-19 using chest 

radiographs from the COVIDx dataset. The 
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architecture of COVID-Net was designed using 

lightweight residual patterns and classified the images 

into three categories: COVID-19, pneumonia, and 

normal. To assess the performance of COVID-Net, the 

authors evaluated it on a separate test set consisting of 

1,000. COVID-Net gained a sensitivity of 93.5% and 

a specificity of 95.7%, according to the data. These 

metrics indicate the model's ability to correctly 

identify positive and negative cases of COVID-19. 

Furthermore, COVID-Net demonstrated superior 

performance compared to the VGG-19 and ResNet-50 

network architectures in terms of test accuracy. 

 

Diaz-escobar et al. [30] utilized the POCUS dataset, 

which consists of 3326 lung ultrasounds from normal, 

COVID-19, and pneumonia patients, for training and 

fine-tuning the models. They conducted two sets of 

tests: binary classification and three-class 

classification. Several pre-trained DL architectures 

were employed in the experiments. Among the 

examined models, Inception-V3 had the best accuracy 

of 89.1%, according to the testing data. This indicates 

its effectiveness in accurately classifying lung 

ultrasounds into the appropriate categories. 

 

Wang et al. [31] proposed a TL approach to develop a 

COVID-19 diagnosis using CT scans. They 

investigated impact of two image enhancement 

techniques, histogram equalization (HE) and contrast 

limited adaptive histogram equalization (CLAHE), on 

improving the quality of the images. Several pre-

trained networks, including ResNet-101, DenseNet-

201, VGG-19, EfficientNet-B4, and MobileNetV2 

were utilized to train the model. The CT images were 

processed using the chosen enhancement technique, 

and then networks were fine-tuned with these 

processed data. The experimental results demonstrated 

that the VGG-19 model combined with CLAHE 

achieved the highest accuracy and recall rates. When 

tested on a SARS-CoV-2 dataset, the model had 

95.75% accuracy and 97.13% recall. 

 

Wang et al. [32] conducted experiments to classify and 

localize eight common thoracic diseases using 

ChestX-ray8 database. The experiments involved 

training a CNN network using weight parameters for 

VGG-16, AlexNet, ResNet-50, and GoogleNet 

architectures. According to findings, ResNet-50 

outperformed the other architectures for multi class 

classification of lung diseases. 

 

Kaur et al. [33] developed a COVID-19 detection 

model using DL techniques, including TL and scratch 

learning. support vector machine (SVM), k-nearest 

neighbor (KNN), and random forest (RF) were used as 

classifiers, and pre-trained models like VGG-16, 

ResNet-50, and MobileNet were used to extract 

features. The CNN scratch technique with an RF 

classifier achieved a high accuracy of 94.03%. 

However, the model's limitation was that it was trained 

using only 285 chest X-rays. 

 

Bahuguna et al. [34] built a hybrid model for COVID-

19 diagnosis from chest radiographs, utilizing a 

combination of a CNN and a KNN algorithm. The 

proposed model incorporated a VGG-16 for feature 

extraction and a KNN algorithm for classification. The 

proposed model achieved impressive performance 

metrics with a high accuracy of “94.84%,  

 

Biswas et al. [35] proposed an algorithm for COVID-

19 prediction using ensemble learning from chest 

radiographs. The researchers employed three widely 

used DL models, namely VGG-16, ResNet-50, and 

Xception.  They proposed a mechanism to combine 

these pre-trained models to enhance the prediction 

capability. The resulting ensemble method gained a 

remarkable accuracy of 98.79%. 

 

Hossain et al. [36] proposed model for classifying 

COVID-19 using a fine-tuned ResNet-50. The model 

was fine-tuned using ten pre-trained weights that were 

developed on large-scale datasets using multiple 

methodologies, including supervised and self-

supervised learning. The proposed model, named 

𝑖𝑁𝑎𝑡2021_𝑀𝑖𝑛𝑖_𝑆𝑤𝐴𝑉_1𝑘, was pre-trained on the 

iNat2021 mini dataset using unsupervised contrastive 

learning. It outperformed other ResNet-50 TL models 

with impressive metrics. However, the authors did not 

explicitly mention crucial factors such as training 

time, memory consumption, and hardware 

requirements. These factors are essential for assessing 

the model's feasibility in real-world clinical settings. 

 

Mercaldo et al. [37] published a report on automated 

COVID-19 detection using TL on CT medical images 

aiming for a faster and more automatic diagnosis. 

Their approach involved distinguishing between 

healthy patients, those with pulmonary disease, and 

those with COVID-19, while automatically 

identifying and highlighting areas of infection in 

affected patients. They proposed a modified VGG-16 

architecture and attained an accuracy of 0.95 in their 

experiments. The average detection time for their 

system was approximately 8.9 seconds. 

 

Duong et al. [38] proposed an algorithm for COVID-

19 detection from chest X-ray and CT images. They 
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employed TL using two newly developed deep neural 

network (DNN) architectures, EfficientNet and 

MixNet. To evaluate the algorithm’s efficiency, the 

authors used a five-fold cross-validation on four real 

datasets. The experimental findings demonstrated that 

the suggested model obtained over 95% accuracy in all 

configurations. 

 

The analysis of literature on COVID-19 detection 

using DL for radiographic images reveals promising 

results, indicating that CNNs are reliable and efficient 

methods for diagnosing COVID-19, even with limited 

training data. Researchers have utilized various 

techniques and architectures, such as, TL, self-

supervised learning, and scratch learning to develop 

these models. The literature also highlights the 

importance of data balancing, data cleaning, and 

image pre-processing, along with selecting 

appropriate DL models and hyperparameters when 

constructing disease diagnosis models. While DL 

models offer significant potential for COVID-19 

detection, further research is needed to ensure their 

robustness, reliability, and accessibility for 

deployment in real-world healthcare environments. 

Lighter-weight CNN architectures play a crucial role 

in optimizing memory consumption, enabling the 

deployment of these models on smart devices or cloud 

platforms. By employing DL models in COVID-19 

detection, healthcare professionals gain the advantage 

of faster and more accurate diagnosis and treatment. 

 

3.Materials and methods 

Our objective is to build a DL supported binary 

classification model to detect COVID-19 using chest 

radiographs. The aim is to develop an effective DL 

model that achieves accurate predictions while 

maintaining a lightweight structure. 

 

Figure 1 demonstrates the graphical representation of 

the proposed model. The workflow for the COVID 

detection process primarily consists of the following 

stages: 

 

1. Selection of an appropriate COVID dataset. 

2. Pre-processing of the images to enhance their 

quality and extract relevant features. 

3. Selection of a suitable DL model architecture and 

customization of the network architecture and 

hyperparameter settings as necessary. 

4. Evaluation of performance metrics to assess the 

effectiveness of the model. 

5. Creation of a user interface to facilitate seamless 

interaction with the developed DL model. 

 

 
Figure 1 Graphical representation of proposed Covid-19 diagnostic approach 

3.1Dataset  
Chest X-ray is a cost-effective modality for lung 

diseases, offering the advantage of low radiation doses 

for patients [39]. The COVID-19 Radiography 

Database, obtained from Kaggle [40], is a publicly 

accessible dataset that consists of images of COVID-

19 (3616), lung opacity (6012), healthy (7980), and 

viral pneumonia (1345). Due to class imbalance and 
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poor contrast of the dataset necessitates image pre-

processing to enhance network performance. Figure 2 

demonstrates the contrast variation observed in X-ray 

images. 

 

   
COVID image                     Normal image 

Figure 2 Original X-Ray images of COVID-19 and 

normal patient 

 

3.2Image pre -processing 

The dataset consisted of images collected from various 

sources, exhibiting variations in resolution, size, and 

light intensity. To address these variations, pre-

processing steps were applied to the images, including 

resizing them to a standardized size and applying HE 

to enhance contrast. Figure 3 visually represents the 

images after undergoing the pre-processing steps, 

showcasing the improved clarity and contrast achieved 

through these techniques. 

 

   
Figure 3 Pre-processed X-Ray images for COVID and 

normal 

 

The problem of an imbalanced dataset is eliminated 

with various techniques such as under-sampling or 

oversampling, especially when one class significantly 

outweighs the others. Under-sampling involves 

reducing the instance numbers in the majority class to 

achieve a balanced class distribution. This is 

accomplished through random sampling or specific 

methods like cluster centroids, Tomek links, or 

NearMiss. By reducing the number of instances in the 

majority class, the model becomes less biased towards 

that class, potentially leading to improved 

classification performance for the minority class. In 

our study, we opted to utilize random under-sampling 

as our chosen technique for addressing the class 

imbalance in our dataset. 

Data augmentation was employed to increase the 

number of training samples while preserving image 

semantic content. Three transformations, namely 

rotation, horizontal flipping, and zooming, were 

applied to the training samples. These transformations 

help introduce variations in the data, enabling the 

model to generalize better. Figure 4 illustrates an 

example of an augmented image generated through 

these transformations. 

 
Figure 4 X-ray images after image augmentation 

 

3.3Model selection 

DL algorithms exhibit a hierarchical learning 

architecture that comprises three layers (input layer, 

hidden layer(s), and an output layer). The application 

complexity and the level of abstraction necessary to 

extract task-specific features determine the number of 

hidden layers to be included in network. DNNs have 

gained popularity in medical image analysis due to 

their capability to automatically extract complex and 

abstract features directly from images without the need 

for explicit programming. Furthermore, DL models 

often outperform manual interpretation approaches in 

terms of accuracy. DL offers various learning 

approaches, including supervised, semi-supervised, 

unsupervised, and reinforcement learning. Each 

approach caters to different learning scenarios and 

objectives.  

 

CNN, inspired by the visual perception mechanisms of 

living beings, has emerged as one of the most 

successful DL algorithms. It possesses the capability 

to pre-process data and learns diverse image features 

using filters. CNNs are specifically suitable for image 

classification tasks owing to their ability to reduce the 

dimensionality of an image while preserving crucial 

abstract features before passing them to the 

classification stage. The architecture of a CNN is 
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organized into layers, as depicted in Figure 5. The 

three essential layers are convolutional, pooling layer, 

and fully connected layer. Each layer serves a specific 

purpose in the learning process and contributes to the 

network's ability to extract meaningful features and 

make accurate predictions. 

 

 
Figure 5 Layered construction of CNN 

 

To determine the optimum CNN architecture, three 

distinct methods are utilized: CNN from scratch 

learning, TL, and TL with fine-tuning. However, in 

any of these methods, selection of hyperparameters 

plays an important role before training the network. 

 

Hyperparameters are crucial in establishing and 

modifying the learning process of ML models. They 

include parameters like the learning rate, batch size, 

number of hidden layers, number of neurons per layer, 

activation function, optimizer, regularization 

parameter, and dropout rate. Tuning these 

hyperparameters is a crucial step in optimizing ML 

performance. It entails carefully selecting appropriate 

hyperparameter values prior to training the model. 

Typically, this tuning process involves methods such 

as trial and error or automated techniques like grid 

search, random search, or Bayesian optimization, 

aiming to find the optimal combination of 

hyperparameter values. 
3.3.1 CNN from scratch learning  

In this setup, a CNN model is constructed from the 

ground up, comprising convolutional, pooling, and 

fully connected layers. Subsequently, this model is 

trained using a dataset, and performance metrics are 

computed to assess the model's effectiveness. 
3.3.2 Transfer learning 

This configuration incorporates two TL approaches: 

TL and TL with fine-tuning. TL uses a previously 

learned model as a basis for training on a similar but 

distinct task [41, 42]. The classification layers are 

replaced and trained on the new dataset. Figure 6 

provides a visual depiction of TL and the fine-tuning 

process. 

 
Figure 6 TL and TL with fine tuning approach 

 

The most popular pre-trained CNN architectures are 

ResNet [43], VGG [44], Inception [45], AlexNet [46], 

LeNet, and MobileNet [47]. For our experiment, we 

utilized VGG-16, VGG-19, ResNet50, InceptionV3, 

and MobileNetV2 for the experiments.  

ResNet 

A DNN architecture, utilizes skip connections, also 

known as residual connections, to bypass multiple 

layers in the network. This technique allows for a 
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smoother flow of information throughout the network, 

even in cases where the network is extremely deep. In 

each block of layers, ResNet incorporates a residual 

connection that adds the output of the previous block 

directly to the output of the current block. This creates 

a shortcut and facilitates faster and more efficient 

training. With the inclusion of skip connections, 

ResNet effectively addresses issues like vanishing 

gradients and helps prevent overfitting, which is a 

common challenge when training DNNs. Notable 

ResNet structures include ResNet18, ResNet50, and 

ResNet101. 

VGG 

It is a CNN architecture that was introduced by Karen 

and Andrew in 2014. It is made up of several 

convolutional layers, each followed by a max pooling 

layer. Rather than using filters of large sizes, VGGNet 

employs multiple cascaded 3x3 kernel-sized filters, 

resulting in significant performance gains over the 

AlexNet network. VGG-16 and VGG-19 are the most 

used VGGNet variants. 

InceptionNet 

Inception is a CNN architecture developed by Google 

researchers in 2014 with the goal of boosting deep 

network performance while reducing computing 

complexity. The architecture comprises a module 

called the Inception module, which replaces the 

traditional approach of adding more layers to the 

model to deepen it. The Inception module applies 

multiple filter sizes in parallel to the input image, and 

the resulting outputs are concatenated and fed to the 

next Inception module. The Inception family 

embodies several variations, including InceptionV1 

(GoogleNet), InceptionV2, InceptionV3, 

InceptionV4, and Inception-ResNet, among others. 

MobileNet 

It is a CNN architecture that was introduced by Google 

researchers in 2017, aimed at achieving efficient 

computation and optimization for mobile devices, 

making it a suitable choice for applications with 

limited resources. The MobileNet design includes 

depth wise separable convolutions, which divide the 

standard convolution operation into depthwise and 

pointwise convolutions, resulting in a substantial 

reduction in the number of parameters and 

computations needed while maintaining performance. 

MobileNetV1 and MobileNetV2 are the primary 

variations of the architecture, with MobileNetV2 

featuring improvements such as residual connections 

and linear bottlenecks. It is a lightweight architecture 

that offers a practical solution for deploying DL 

models on smart portable devices. 
3.3.3 TL with fine tuning 

In a DL model, the lower layer is responsible for 

capturing general features, while the higher layer 

focuses on extracting more complex and task-specific 

features [48]. To improve the efficiency of pretrained 

networks, some layers of the convolutional base are 

often frozen while others are trainable. Additionally, 

the classification layer is customized based on the 

specific number of classes required for the task at 

hand. In this research, our emphasis was on fine-

tuning VGG-16 and MobileNetV2, as they 

demonstrated superior performance compared to other 

pretrained architectures for the classification of 

COVID-19. To improve the effectiveness of the VGG-

16 network, modifications were made to its 

classification layer, the number of trainable layers was 

adjusted, and additional layers were introduced. This 

approach aimed to enable the network to learn more 

specific features that were relevant to our 

classification task. The modified VGG-16 

architecture, shown in Figure 7, illustrates the 

customization of the classification layers, the inclusion 

of two extra layers, and the preservation of the 

remaining layers by keeping them frozen. To fine-tune 

the MobileNetV2 model, we made changes to its 

classification layer and added additional trainable 

layers. The modified structure of MobileNetV2, 

illustrated in Figure 8, demonstrates these 

adjustments. 

 

 
Figure 7 Proposed VGG-16 fine tune architecture 
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Figure 8 Proposed MobileNetV2 fine tune architecture 
 

3.4 Evaluation of performance metrics  

The predicted model’s performance is analysed using 

standard performance measures including accuracy, 

precision, recall (sensitivity), and F1 score. The 

accuracy-loss curves of training and validation, 

confusion matrices, and AUC curves are obtained. The 

training and validation accuracy curves identify if the 

model leads to overfitting or underfitting. Overfitting 

occurs when the model excessively fits the training 

data, while underfitting happens when the model fails 

to capture the patterns from the training set. Both 

situations tend to decrease the data generalization 

ability of a model. 

 

Number of true positive (TP), true negative (TN), FP, 

and FN predicts the classifier's performance in terms 

of confusion matrix. Some of the performance 

measures are formulated as shown below. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁
 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑝𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑝𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

3.5 Graphical user interface 

The proposed model incorporates a user interface 

developed using Python Gradio. This interface allows 

users to interact with the ML model through a web 

browser, the deployment of the model and facilitating 

its sharing with others. This enables users to remotely 

access the model to perform X-ray image binary 

classification. 

 

4. Results and discussion  
For these experiments, the proposed model was 

developed using the TensorFlow/Keras Python 

framework on an Intel Xeon Gold 5118 processor with 

a clock speed of 2.3 GHz. Several pre-trained CNN 

networks, namely ResNet50, VGG-16, VGG-19, and 

MobileNetV2, were employed, alongside a custom 

CNN network with modified layers. The evaluation of 

model involved the use of standard performance 

metrics, including a normalized confusion matrix that 

visually represents the predicted and true labels for 

each class.  

 

To examine the impact of number of layers on the 

efficiency of the CNN architecture, a series of 

experiments were carried out. CNN architectures were 

specifically created with 4 layers, 5 layers, and 6 layers 

from scratch. These architectures were then trained 

using identical hyperparameters, which consisted of 

25 epochs, batch size 6, and RMSprop optimizer with 

a 0.1 learning rate. 

 

According to experimental results presented in Table 

1, it is evident that the 5-layer CNN architecture 

outperformed both the 4-layer and 6-layer 

architectures in terms of accuracy on the dataset. This 

finding suggests that increasing the depth of the CNN 

architecture beyond a certain point does not 

necessarily result in higher accuracy. Additionally, 
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other factors such as the total images in the dataset, 

epochs, batch size, and optimizer greatly influence the 

accuracy of the model. To validate our findings, the 

model was tested on both balanced and unbalanced 

datasets. The balanced dataset with 2500 COVID-19 

and 2500 normal images   and unbalanced datasets 

comprising 3500 COVID-19 and 1500 normal images 

are supplied to the network. The experiments were 

conducted using a 5-layer CNN architecture built from 

scratch with the same set of hyperparameters. Table 2 

shows the results of these tests. 

 

Table 1 Comparison performance measures of number of   layers of CNN 

CNN scratch 4 Layers 5 Layers 6 Layers 

Training Accuracy  0.73 0.77 0.79 

Validation Accuracy  0.70 0.78 0.82 

Precision 0.83 0.89 0.86 

Recall 0.76 0.79 0.77 

F1 Score 0.78 0.82 0.80 

AUC 0.74 0.82 0.78 

 

Table 2 Performance measurement for balanced and unbalanced dataset 

Scratch CNN Unbalanced dataset Balanced dataset 

Training Accuracy 0.73 0.77 
Validation Accuracy 0.70 0.78 
Precision 0.83 0.89 

Recall 0.76 0.79 

F1 Score 0.78 0.82 

AUC 0.74 0.82 

 

Table 2 highlights performance of the model 

concerning achieved accuracy during the training-

validation stages, as well as higher score of parameters 

(precision, recall, F1 score, and AUC) with balanced 

dataset. Figure 9 displays the accuracy-loss curves 

obtained with 5-layer CNN architecture trained using 

RMSprop optimizer (Epochs=25) balanced and 

unbalanced datasets. 

 

  
                                       (a)                                                                                 (b) 

  
                                        (c)                                                        (d)                

Figure 9 Accuracy-loss curve for CNN-5 layers Model (a, b) balanced dataset (c, d) unbalanced dataset 
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The experimental findings from our study suggest that 

the balanced dataset demonstrates a less pronounced 

disparity between training and testing accuracy/loss. 

This observation serves as an indication that the model 

exhibits improved generalization on the validation set. 

The equal distribution of both classes in the balanced 

dataset facilitates equal learning opportunities for the 

model across all categories, leading to enhanced 

overall performance. Consequently, we underscore the 

importance of dataset balance in the pursuit of 

achieving optimal accuracy for our classification 

problem. As part of this study, the COVID-19 

radiography database was divided into two distinct 

sets: a training and a test or validation set. Random 

assignment was performed for each image, resulting in 

the following proportions: 80% for training and 20% 

for testing, 70% for training and 30% for validation, 

and 60% for training and 40% for validation. Analysis 

of our experimental findings that the most favourable 

outcomes were achieved when utilizing a 70% training 

and a 30% validation set.  

 

In this study, a TL approach was employed, 

specifically retraining only the classification layer 

while keeping the remaining layers fixed. The primary 

aim was to compare the performance of various pre-

trained networks, VGG-16, VGG-19, ResNet50, 

InceptionV3, and MobileNetV2, in the binary 

classification of COVID-19. The hyperparameters 

utilized for all pre-trained architectures are found in 

Table 3. 

 

Table 3 Hyper-parameters of all pretrained 

architectures 

Hyper parameters Values 

Pretrained weights Imagenet 

Bath size 6 

No of epochs 25 

Hyper parameters Values 

Optimizer Adam 

Learning rate 0.001 

Train –Test spilt 70 -30 

Weight decay None 

 

The accuracy-loss curves depicted in Figure 10 

provide valuable insights into the training 

performance of each architecture. Based on our 

experimental findings, ResNet-50 and VGG-19 

exhibited slower convergence rates, suggesting that a 

longer training duration may be necessary to achieve 

optimal performance. InceptionV3, on the other hand, 

displayed a noticeable gap in its accuracy-loss curve, 

indicating potential issues with overfitting or 

underfitting. In contrast, VGG-16 and MobileNetV2 

exhibited smaller gaps in their training and validation 

accuracy/loss curves, indicating more stable and 

consistent performance. Notably, MobileNetV2 

demonstrated stable results after 15 epochs, suggesting 

its potential as an efficient architecture for the specific 

task at hand. These observations underscore the 

importance of selecting appropriate pre-trained 

architectures with favourable convergence properties 

to ensure effective model training and performance. 

 

Table 4 presents the approaches employed in the study 

along with the achieved performance measures. Based 

on these metrics, VGG-16 and MobileNetV2 exhibited 

higher accuracy and overall performance compared to 

the other approaches for COVID-19 classification. It 

is crucial to highlight, however, that there is still 

potential for improvement in terms of closing the gap 

between the training and validation curves. Further 

experimentation or fine-tuning of the model could be 

explored to enhance its generalization capability and 

address this aspect.  

 

 
                            (a)                                                                                    (b) 
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                                          (c)                                                                                     (d) 

 
                                           (e)                                                                                     (f) 

 
                                          (g)                                                                                     (h) 

 
                                           (i)                                                                                      (j) 

Figure 10 Accuracy-loss curve of various pretrained architectures (a, b) ResNet-50 (c, d) VGG-16 (e, f) VGG-19 (g, 

h) InceptionV3 (i, j) MobileNetV2 
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To optimize the VGG-16 network, the original 

classification layer was replaced with a customized 

classification layer designed for the specific 

classification objective. The first three layers, 

responsible for detecting low-level features, were 

fixed, while layers 4 and 5 were made trainable to 

capture high-level features relevant to the task. 

However, the accuracy and loss curves obtained from 

fine-tuning VGG-16, as shown in Figure 11, revealed 

overfitting to the training data and a subsequent 

decline in accuracy. In order to mitigate this issue, 

various techniques such as dropout regularization and 

early stopping were applied, but they did not yield 

improvements in accuracy. It was hypothesized that 

the complex architecture of VGG-16 and more 

trainable parameters, coupled with the limited size of 

the dataset, contributed to the observed overfitting 

problem. 

 

Table 4 Performance metrics of various pretrained architectures 

Approaches  

Used 

Training 

Accuracy  

Validation 

Accuracy 

Precision Recall  F1 Score AUC 

Resnet-50 0.72 0.78 0.92 0.78 0.82 0.85 

InceptionV3 0.78 0.76 0.89 0.86 0.87 0.83 

VGG-19 0.78 0.81 0.88 0.77 0.80 0.78 

VGG-16 0.93 0.91 0.92 0.91 092 0.89 

MobileNetV2 0.80 0.82 0.87 0.83 0.83 0.85 

 

 
Figure 11 Accuracy-loss curve of VGG-16 tuning model 

 

To enhance the accuracy of the VGG-16 architecture, 

the experiment involved making modifications to the 

pretrained network. Specifically, the classification 

layer was customized, two additional layers were 

added, and the remaining layers were kept frozen. The 

proposed VGG-16 architecture is presented in Figure 

7.  These modifications aimed to enable the network 

to learn more specific and relevant features for the 

classification task, while avoiding issues of overfitting 

and underfitting. The results of the modified VGG-16 

model showed enhanced accuracy compared to the 

pre-trained VGG-16 model. The training accuracy 

achieved a level of 94%, indicating effective learning 

from the training data. Similarly, the validation 

accuracy reached 93%, demonstrating that the model's 

performance generalized well to testing data. Figure 

12 visually illustrates the accuracy achieved during the 

training process, with a consistent and steady increase 

in both training and validation accuracy. This signifies 

that the modified VGG-16 model has effectively 

learned from the dataset, leading to improved 

performance. 

 

To enhance the accuracy of the MobileNetV2 model, 

we conducted fine-tuning by modifying its 

classification layer and introducing additional 

trainable layers. MobileNetV2 was configured to have 

initial layers non trainable and last 24 trainable layers. 

The MobileNetV2 architecture proposed in this study 

is depicted in Figure 8. A loss versus learning rate 

curve was plotted for the proposed MobileNetV2 

architecture to determine the optimal optimizer and 

learning rate for the fine-tuning process. Figure 13 

illustrates the model’s potential for the loss and 

different learning rates to guide in choosing the 

selection of most suitable optimizer and learning rate. 

With ' RMSprop ' optimizer and learning rate value 

between 0.0001 to 0.001 yielded the best performance. 

By fine-tuning the MobileNetV2 model in this 

manner, the model was adapted specifically to the 

classification task, resulting in improved results. 
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Figure 12 Accuracy-loss curves Modified VGG-16 

 

Figure 14 shows the perfectly matched accuracy-loss 

curves obtained with tuned MobileNetV2 achieving 

training-validation accuracy of 96%. Table 5 

summarizes the performance metrics for the fine-

tuned VGG-16 and MobileNetV2 architectures. Both 

models demonstrated excellent performance in the 

binary classification of COVID-19. The VGG-16 

model attained 94%   and 93%    validation accuracy, 

respectively, while the MobileNetV2 achieved even 

higher accuracy, with 96% training and validation 

accuracy. These results underscore the efficacy of 

fine-tuning in adapting pre-trained models to the 

specific classification task, resulting in improved 

accuracy and overall performance. Figure 15 presents 

the confusion matrix for all pre-trained architectures, 

depicting the model's ability to accurately classify 

COVID-19 and healthy images with only a few 

misclassifications. The remarkable accuracy and 

minimal misclassification rate of the model 

demonstrate its potential for assisting in the diagnosis 

of COVID-19 from chest radiography. This study 

demonstrates the effectiveness of TL with a fine-

tuning approach in developing accurate models for 

COVID-19 detection from chest X-rays. The tuned 

MobileNetV2 achieved a validation accuracy of 96%, 

along with high precision, recall, F1 score, and AUC. 

 

Figure 16 compares the performance of VGG-16 and 

MobileNetV2 models in terms of accuracy, training 

time, and memory usage. These results suggested that 

the MobileNetV2 model is a more efficient choice for 

COVID-19 X-ray image classification tasks, as it 

achieved higher accuracy with less training time and 

memory usage.  

 

A user interface was developed using the Python 

Gradio framework to facilitate interaction with the 

trained model. This interface enables users to upload 

an X-ray image for prediction by accessing a web link. 

The results of the prediction are then displayed, as 

shown in Figure 17. 

 

 
(a)Optimizer=’sgd’ 
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(b)Optimizer=’adam’ 

 
(c) optimizer=’ RMSprop’ 

Figure 13 Learning rate versus loss curve of different optimizer for proposed MobileNetV2 architecture 

 

 
Figure 14 Accuracy-loss curves of proposed tuned MobileNetV2 

 

Table 5 Performance metrics of modified VGG-16 and MobileNetV2 fine-tuned pretrained architecture 

Approaches  

Used 

Training 

accuracy  

Validation 

accuracy 

Precision Recall  F1 Score AUC 

VGG-16 (Fine Tuning) 0.94 0.93 0.93 0.92 0.91 0.91 

MobilentV2 (Fine 

Tuning) 
0.96 0.96 0.96 0.96 0.96 0.96 
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CNN from scratch (Unbalanced dataset) CNN from scratch (Balanced dataset) 

  
Resnet-50 VGG-19 

  
VGG-16 VGG-16 Fine Tuning 

  
MobileNetV2 MobileNetV2 Fine-tuning 

  
Figure 15 Confusion matrix 
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Figure 16 Comparisons of VGG-16 and MobilenetV2 

 

 
Figure 17 User interface for COVID classification 

 

4.1Result comparison with similar work 

Recently, numerous research studies have been 

conducted to classify COVID-19. In Table 6, we 

compare our approach with previous work that used 

different DL models. A complete list of abbreviations 

is shown in Appendix I. 

 

Table 6 Comparison of proposed model with similar work 

 References DL model Dataset used Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F1 

Score 

(%) 
[49] EfficientnetB0 tuned COVID_19 radiography 95 90 97  
[50] COVIDX-Net IEEE Covid chest X-ray 

dataset 
90 91 90 90 

[51] Deep CNN from scratch  X-ray and metadata collected 

from Wuhan  
93 -- -- -- 

[52] COVIDGAN for CNN Combined three datasets 

COVID-19 radiography, IEEE 

Covid chest X-ray, COVID-19 

chest X-ray initiative 

95 95 95 95 

[53] CovidSORT-Ensemble 

model built on the majority 

voting approach 

Publicly available chest X-

rays 
96 -- 

 
-- -- 

[54] ResNet101 COVID-QU dataset -three 

class 
96          96 96 96 

Proposed MobileNetV2 Tuned COVID-19 radiography  96 96 96 96 

 

This suggests that the proposed MobileNetV2 model 

beats other models in terms of performance measures. 

The evaluation is based on a specific dataset, and 

further validation on larger datasets is necessary to 

confirm the findings. To validate the credibility of the 

proposed work, tests were conducted on various 

radiography datasets as presented in Table 7. Figure 

18 displays the training and validation accuracy-loss 

curves as well as the confusion matrix for these 

0
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datasets. Based on this evaluation, it can be concluded 

that the model performed satisfactorily for all datasets. 

 

4.2Limitation of the work 

The obtained model performance relies various factors 

like size of dataset, complexity, and quality. The 

evaluation is conducted on a specific dataset, and 

additional validation on larger datasets is required to 

validate the results. The study solely relies on chest 

radiographs in detecting COVID-19. The inclusion of 

primary clinical investigations and travel history can 

enhance the accuracy of the achieved findings further. 

Therefore, any AI system developed using this dataset 

should be used alongside other diagnostic tools and 

clinical assessments performed by healthcare 

professionals. 

 

Table 7 Performance measures on various dataset 
Reference and dataset Number of 

COVID-19 images 

Number of 

normal images 

Validation 

accuracy 

Precision Recall  F1 

Score 

AUC 

[55] Curated 1281 3270 0.96 0.96 0.96 0.96 0.96 

[56] COVID-19 

Xray-CT images 

 

4044 

5500 0.92 0.92 0.92 0.91 0.90 

 

[57] IEEE Covid 

chest X-ray 

299 349 0.99 0.99 0.99 0.99 0.99 

 

 

                         
epoch 

  

   
[52] Curated dataset  [53] X-ray-CT images dataset [54] Covid-19 dataset 

Figure 18 Accuracy-loss curve and confusion matrix of various datasets
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5. Conclusion and future scope 
The present study aimed to conduct a comprehensive 

comparison between CNN-based transfer learning 

(TL) and fine-tuning approaches for the detection of 

COVID-19 using X-ray images. Among the evaluated 

models, MobileNetV2 exhibited outstanding 

performance, achieving an impressive accuracy of 

96%. Notably, this approach demonstrated efficient 

resource utilization, with a training time of 3.37 hours 

and a memory utilization of only 15.2 MB. When 

compared to other pre-trained models, MobileNetV2 

with fine-tuning outperformed them in terms of 

accuracy, memory utilization, training time, and AUC. 

Its lightweight and accurate architecture rendered it 

highly suitable for deployment on web and remote 

service platforms. This study underscored the 

importance of dataset balance and the careful selection 

of hyperparameters to achieve optimal model 

performance. The findings of this research contributed 

to the development of rapid and cost-effective 

techniques for the automatic detection of COVID-19 

using chest radiographs. The resultant model, along 

with its web-based system, holds great potential for 

providing valuable support to the medical community 

in the early detection of COVID-19. 

 

To further enhance the model's performance and 

contribute to a more accurate and reliable diagnosis of 

lung disorders, future research directions should 

encompass exploring noise removal techniques, 

incorporating metadata, feature selection, and 

ensemble learning. These approaches have the 

potential to improve the model's efficiency, as well as 

enhance the accuracy and reliability of the diagnosis. 

Furthermore, the proposed model shows promise for 

detecting various lung-related disorders in the future. 
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Appendix I 
S. No.  Abbreviation Description 

1 AUC Area under the curve 

2 CAD Computer-Aided Diagnosis 

3 CT Computed Tomography 

4 CLAHE Contrast Limited Adaptive 

Histogram Equalization 

5 CapsNet Capsule Network 

6 CNN Convolutional Neural Network 

7 DCNN Deep Convolutional Neural 
Network 

8 DL Deep Learning 

9 DNN Deep Neural Network 

10 DST Department of Science and 
Technology 

11 FN False Negative 

12 FP False Positive 

13 HE Histogram Equalization 

14 KNN K-Nearest Neighbor 

15 ML Machine Learning 

16 ResNet Residual Network 

17 RF Random Forest 

18 TN True Negative 

19 TP True Positive 

20 TL Transfer Learning 

21 VGG Visual Geometry Group 

22 WHO World Health Organization 
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