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1.Introduction 
The thorax is commonly referred to as the chest. The 

region is located on the body between the neck and 

the belly. It is surrounded and protected by the 

ribcage. Among its essential organs are the heart, 

lungs, oesophagus, and principal blood vessels. The 

thoracic region also includes the muscles, bones, ribs, 

sternum (breastbone), and thoracic vertebrae (spine) 

[1]. The thorax serves as a protective housing for the 

organs within it and plays a crucial role in 

respiration, as it contains the lungs and facilitates the 

movement of air in and out of the respiratory system. 

It is an important area for medical diagnosis and 

treatment as various disorders and conditions can 

affect the organs and structures within the thorax, 

including respiratory diseases, cardiovascular 

conditions, chest wall abnormalities, and tumors [2]. 

  

 

 
*Author for correspondence 

Chest X-ray (CHXR) imaging is a widely used 

diagnostic tool for evaluating thoracic disorders. 

 

Its popularity stems from its accessibility and its 

ability to provide valuable insights into the condition 

of the thoracic region. A little muscle called the 

diaphragm separates the thorax and abdomen. 

Numerous conditions that may impede the chest from 

functioning properly are referred to as thoracic 

illnesses [3]. These conditions may also impair 

pulmonary, respiratory, and capacity to breathe 

functions. Bacterial, viral, or fungal infections link 

environmental variables to thoracic disorders. 

 

Thoracic disorders pose a significant global health 

challenge. Early and accurate diagnosis of these 

disorders is crucial for timely intervention and 

improved patient outcomes. CHXR imaging is one of 

the most commonly used diagnostic modalities for 

thoracic disorders due to its cost-effectiveness and 

widespread availability. However, interpreting 
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CHXR images can be complex and challenging, so 

we may require the expertise of skilled radiologists 

[4]. 

 

In recent times, the field of medical image analysis 

using the CHXR has witnessed significant 

advancements through convolutional neural networks 

(CNNs). These methods have demonstrated 

remarkable success in this domain. CNN models can 

automatically learn features from large datasets to 

extract relevant information from medical images and 

make accurate predictions [5]. However, CNN 

models have limitations in handling translation and 

rotation invariance, which can be critical in thoracic 

imaging, where the position of lesions or 

abnormalities can vary. 

 

To address these limitations, capsule neural networks 

(CapsNN) have emerged as a promising deep 

learning approach. CapsNN uses "capsules" as basic 

building blocks instead of traditional neurons. 

Capsules are groups of neurons that encode not only 

the presence of features in an image but also their 

spatial relationship, orientation, and other attributes, 

making CapsNN inherently capable of handling 

complex spatial relationships and variations in image 

data [6]. CapsNN is designed to learn the hierarchical 

representation of features in images, which can 

potentially enable it to better capture the complex 

anatomical structures and abnormalities in CHXR 

images, leading to improved accuracy in thoracic 

disorder diagnosis [7]. 

 

Accurate interpretation of the CHXR images can be 

challenging and subjective, as it requires extensive 

experience and expertise to detect subtle 

abnormalities. Moreover, the increasing workload on 

radiologists and the potential for human error may 

lead to wrong interpretations [8]. 

 

Motivated by the potential advantages of CapsNN in 

medical imaging analysis, this study introduces a 

deep learning approach that relies on CapsNNs. The 

proposed method focuses on the early diagnosis of 

thoracic disorders by analyzing the CHXR images. 

The goal of this study is to develop a more accurate 

and efficient method for thoracic disorder diagnosis 

that can aid radiologists in making timely and 

informed decisions, ultimately improving patient care 

and outcomes. 

 

The fast spread of these thoracic ailments has 

overburdened healthcare infrastructures, necessitating 

a more effective allocation of medical supplies and 

equipment. Early detection of these illnesses will 

hasten the separation of thoracic disorders from non-

thoracic disorders, which will aid healthcare 

authorities in making the most efficient use of 

resource allocation strategies and early disease 

prevention [9]. Impaired tissues in the chest are the 

primary cause of thoracic diseases. It impacts the 

different physiological systems in a predictable order, 

including the veins, heart, lungs, mediastinum, 

oesophagus, chest wall, and diaphragm. Chest pain, 

hypoxia, paralysis, and a host of other symptoms are 

all signs of thoracic diseases. 

 

One of the most innovative developments in medical 

diagnostics in recent decades is medical imaging. 

Medical imaging assists radiologists in establishing 

accurate diagnoses by providing a visual 

representation of the human body's interior. 

Traditional machine learning methods, such as 

support vector machines, have been employed for 

medical image categorization [10]. The performance 

of these approaches is much below the practical 

norm, and their recent development has been 

relatively gradual. 

 

CHXR deformity evaluation is a laborious process 

for radiologists, and several researchers have created 

several techniques to assist them in doing it more 

successfully [11]. For approximately a decade, deep 

learning models have given rise to sophisticated 

computerized image applications that are far faster at 

spotting infections by utilizing image categorization 

and discovery methods [12]. 

 

The main contributions of this paper are as under: 

Development of a novel deep learning framework: 
In the study, a deep learning method was introduced 

that is intended to evaluate X-ray images in the 

context of thoracic illnesses. The proposed 

framework utilizes a CapsNN, which offers a unique 

architecture and capabilities compared to traditional 

CNN.  

Automation and efficiency: The paper aims to 

automate the process of thoracic disorder diagnosis 

using X-ray images by employing the deep learning 

approach. This automation can significantly reduce 

the time and effort required for manual interpretation 

by radiologists. It contributes to making the diagnosis 

process more efficient, enabling faster results, and 

potentially improving patient outcomes. 

Early detection of thoracic disorders: Early 

diagnosis of thoracic disorders is crucial for timely 

intervention and improved treatment outcomes. The 

paper focuses on leveraging deep learning techniques 
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to identify potential abnormalities or signs of thoracic 

disorders in their early stages. By doing so, it 

contributes to the goal of improving early detection 

and facilitating prompt medical intervention. 

 

The purpose of this paper is to study and put forward 

a deep learning-oriented methodology for the early 

detection and diagnosis of thoracic disorders through 

X-ray imaging. Specifically, the paper aims to utilize 

a neural network architecture called the CapsNN to 

analyze X-ray images and identify potential 

abnormalities or abnormalities associated with 

thoracic disorders at an early stage. The paper intends 

to address the limitations of traditional methods used 

in thoracic disorder diagnosis, which can be time-

consuming and prone to human error. By leveraging 

deep learning techniques, specifically CapsNN, the 

authors aim to develop an automated and accurate 

system that can assist medical professionals in 

identifying and diagnosing thoracic disorders in their 

early stages. The block diagram of this approach is 

described in Figure 1. 

 

 
Figure 1 Block diagram of the approach 

 

In Section 1 of this research study, we provide 

relevant theories and related efforts for the proposed 

thoracic disease screening model. Section 2 discusses 

related work and presents a literature review, 

exploring existing research and studies relevant to the 

topic. Section 3 focuses on the category of materials 

and processes, delving into various materials and 

processes pertinent to the study. Section 4 describes 

the acquired datasets and the data pre-processing with 

a result-oriented experimental setup. In Section 5, we 

present the performance and discussion of the 

screening model. Finally, the study is concluded in 

Section 6. 

 

2.Literature review 
CNN, which is based on deep learning, is chosen to 

perform diagnoses of these disorders. It has been 

used in several projects involving the categorization 

of restorative photographs. It has always achieved 

high levels of correctness, so it is expected that this 

arrangement would function admirably. 

 

In a preceding study, researchers presented an 

exceptionally effective deep network for rapid 

tuberculosis (TB) identification and visualization in 

CHXR images. Their efficient CNN outperformed 

previous models in terms of speed and accuracy. 

They explored gradient-weighted class activation 

maps (Grad-CAMs) and saliency maps as 

visualization techniques, achieving high precision in 

TB detection. An unexpected finding was the reliable 

determination of cardiomegaly location using the 

heart and its surrounding area. Conventional models 

rely on the heart-to-lung ratio, which showcases an 

advantage of the method [13]. 

 

The current state of research in thoracic disorder 

detection using deep learning primarily relies on 

CNNs. However, CNNs have limitations in capturing 

spatial relationships and recognizing transformed 

images. A potential alternative is the capsule 

network, which comprises related neurons 

representing specific attributes of an entity, enabling 

a comprehensive capture of image features and 

spatial relationships. This network reduces reliance 

on large datasets, has shown promise as an alternative 

to CNNs, and also offers advantages in feature 

extraction. Future research can explore the potential 

of capsule networks in thoracic disorder detection 

[14]. A dynamic routing algorithm is proposed that 

enables capsules to communicate with each other 

during the forward pass, allowing them to reach a 
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consensus on the presence of specific features or 

objects in the input data. This routing mechanism 

helps to improve the efficiency of information flow 

in the network and allows capsules to collectively 

represent higher-level features [15]. 

 

The review provides an overview of deep learning 

methods for thoracic pathology detection and 

classification in CHXR images. The discussion 

revolves around the utilization of CNNs, recurrent 

neural networks (RNNs), and hybrid models trained 

on extensive datasets to acquire meaningful features. 

The result of this model shows high accuracy in 

identifying abnormalities. Deep learning offers 

advantages in handling complex datasets, achieving 

accuracy, and detecting multiple pathologies. The 

limitations of this research include the need for 

labelled data, potential bias, interpretability 

challenges, and generalization to rare cases. 

Standardized protocols, quality assurance, and further 

research are emphasized to address limitations and 

ensure reliability in clinical practice [16]. 

 

Another study introduces an artificial intelligence-

assisted TB detection method using a deep learning 

normalization-free network model for CHXR images 

[17]. This model achieves effective TB detection and 

classification without the need for image 

normalization. It offers advantages such as accurate 

detection, the elimination of the normalization step, 

and the utilization of a large dataset. However, 

limitations include the reliance on labelled datasets, 

limited generalization to other thoracic abnormalities, 

potential interpretability challenges, and the need for 

further validation on diverse populations and 

datasets. Addressing these limitations through 

additional research and validation would enhance the 

reliability and applicability of the proposed method 

[18]. 

 

The study focuses on deep learning and transfer 

learning-based models for COVID-19 detection using 

radiography images. These models harness the 

capabilities of deep learning algorithms and transfer 

learning techniques to identify COVID-19 from chest 

radiographs. The advantages of these approaches 

include their ability to analyze large datasets, extract 

relevant features, and achieve high accuracy in 

COVID-19 detection. Transfer learning allows the 

models to leverage pre-trained networks and adapt 

them to the specific task of COVID-19 classification. 

However, limitations such as the requirement for 

labelled datasets, potential bias in training data, and 

challenges in generalizing to unseen or rare cases are 

present. Further research and validation are crucial to 

address these limitations and ensure the effectiveness 

and reliability of these models in real-world clinical 

practice [19]. 

 

The comparison study evaluates deep-learning 

architectures, including CNNs, RNNs, hybrid 

models, and transfer learning approaches, for 

classifying thoracic pathology. The result of this 

model shows accurate classification with advantages 

in capturing complex patterns and features. CNNs 

excel in spatial extraction, RNNs in temporal 

dependencies, and hybrid models perform well. 

Limitations include labelled datasets, overfitting, 

interpretability, and generalization challenges [20]. 

 

Another comprehensive review of capsule networks 

in X-ray Imaging provides an overview of the use of 

capsule networks in the analysis of X-ray images for 

the early detection of thoracic disorders. The review 

discusses the principles and advantages of capsule 

networks compared to traditional CNNs. It highlights 

the potential of capsule networks for capturing spatial 

relationships and hierarchical structures in X-ray 

images. The paper also discusses the challenges and 

limitations associated with capsule networks in this 

context [21]. 

 

In medical imaging with deep learning, a CapsNN for 

the automatic classification of CHXR diseases is 

proposed [22]. The proposed CapsNN architecture 

includes multiple convolutional layers followed by 

capsule layers and uses dynamic routing to facilitate 

information flow between capsules. The authors 

evaluate the performance of their proposed CapsNN 

on a publicly available CHXR dataset and compare it 

with other state-of-the-art methods. The results 

demonstrate that the proposed CapsNN achieves 

competitive performance in terms of accuracy and 

area under the receiver operating characteristic 

(AUC-ROC), showing its potential for automatic 

classification of CHXR diseases [23]. 

 

A capsule with CNN (Caps-CNN) for the 

classification of CHXR images to enable early 

detection of lung diseases is also proposed [24]. 

Multiple convolutional layers are followed by 

capsule layers in the proposed Caps-CNN, which 

uses dynamic routing to facilitate information flow 

between capsules. The Caps-CNN is trained on a 

dataset of CHXR images to learn the representations 

of different lung diseases. The authors assess the 

effectiveness of their proposed Caps-CNN by 

conducting performance evaluations on a publicly 
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accessible CHXR dataset. They also conduct a 

comparative analysis with other state-of-the-art 

methods. The results demonstrate that the proposed 

Caps-CNN achieves promising outcomes in terms of 

accuracy, sensitivity, specificity, and F1 score. 

 

The authors highlight the limitations of traditional 

CNNs in handling translation and rotation invariance, 

which can be crucial in accurately diagnosing 

thoracic diseases. They introduce capsule networks as 

a potential solution to overcome these limitations. 

Capsule networks utilize a hierarchical structure of 

capsules that can capture the spatial relationships 

between objects or features in the input data [25]. 

The paper presents a framework for training capsule 

networks for thoracic disease classification, which 

involves capsule-based convolution and routing 

mechanisms. The proposed approach is evaluated on 

a large dataset of CHXR images, and its performance 

is compared with traditional CNN-based approaches. 

The results show that the capsule network-based 

approach outperforms the CNN-based approaches in 

terms of accuracy, sensitivity, specificity, and F1-

score for thoracic disease classification. The authors 

conclude that capsule networks, with their ability to 

capture spatial relationships and handle translation 

and rotation invariance, can be an effective and 

promising approach for the automatic diagnosis of 

thoracic diseases from CHXR images. 

 

CapsNN is a type of neural network that can capture 

hierarchical relationships between features to 

improve the accuracy of thoracic disease diagnosis. 

The paper presents a detailed description of the 

proposed CapsNN-based model, including its 

architecture and training process. The authors 

conducted experiments on a dataset of CHXR images 

to evaluate the performance of their CapsNN model 

for thoracic disease diagnosis [26]. They compare 

their CapsNN model with other CNN models 

commonly used in thoracic imaging analysis. The 

experimental results show that the CapsNN model 

outperforms the traditional CNN models in terms of 

accuracy, sensitivity, specificity, and area under the 

curve (AUC) for thoracic disease diagnosis. The 

authors also discuss the interpretability and 

computational complexity of CapsNN as potential 

limitations of their approach. 

 

A novel approach for thoracic disease classification 

from the CHXR images using CapsNN with an 

attention mechanism is proposed to enhance the 

discriminative capability of the CapsNN model by 

selectively focusing on relevant regions in the input 

images [27]. The proposed CapsNN with attention 

mechanism achieves improved accuracy, sensitivity, 

and specificity in the AUC-ROC compared to 

traditional CNN models. The experimental results 

demonstrate the potential of the proposed approach 

for accurate and effective thoracic disease 

classification from CHXR images, which suggests its 

potential utility in clinical practice for early diagnosis 

of thoracic disorders. 

 

An efficient approach for the diagnosis of thoracic 

disorders from CHXR images using CapsNN is also 

proposed. In this approach, the author addresses the 

limitations of traditional CNNs in handling 

translation and rotation invariance, which can affect 

the accuracy of thoracic disease diagnosis [28]. They 

proposed a CapsNN-based model that incorporates 

capsule layers with dynamic routing by agreement to 

capture local and global contextual information from 

the input images. The proposed approach achieves 

high accuracy in the diagnosis of thoracic disorders 

while also demonstrating efficiency in terms of 

computational resources and training time. The 

experimental results indicate that the CapsNN-based 

approach outperforms traditional CNNs, highlighting 

the potential of CapsNN for efficient and accurate 

diagnosis of thoracic disorders from CHXR images. 

 

A deep learning approach for thoracic disease 

classification from the CHXR images using CapsNN 

is also presented. The authors propose a deep 

CapsNN model with multiple capsule layers to 

capture complex spatial relationships and hierarchical 

features in the CHXR images. They also introduce a 

dynamic routing mechanism to enable effective 

information flow between capsules. The proposed 

approach achieves high accuracy in thoracic disease 

classification, outperforming traditional CNN in 

terms of accuracy and robustness [29]. The 

experimental results demonstrate the potential of 

CapsNN in capturing fine-grained features and 

improving the accuracy of thoracic disease 

classification from the CHXR images. 

 

To surpass the performance of radiologists, an 

algorithm is developed specifically for diagnosing 

pneumonia from frontal-view CHXR images. The 

algorithm is trained using the ChestX-ray14 dataset 

with the 121-layer dense convolutional network 

(DenseNet) [30]. To account for label dependencies, 

a technique based on the potential of training deep 

convolutional neural networks (DCNNs) for 

computer-aided diagnosis systems (CADs) is 

employed. In a separate study, multiple CNN models 
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were employed to classify chest radiographs into TB-

positive and TB-negative groups. The system's 

performance is evaluated using two publicly 

available datasets: the Shenzhen CHXR set and the 

Montgomery County CHXR set. More than 80% 

accuracy is achieved by the suggested computer-

aided demonstration framework for TB screening, 

which is equivalent to radiologists' performance. 

 

Several pre-processing techniques were used to train 

the model on CHXR pictures. The classification 

approach determined whether or not pneumonia was 

present in the CHXR pictures using CNNs and 

residual network (ResNet) architecture [31]. They 

show that their method outperforms the comparable 

reference standard in both classification and 

localization assignments and can successfully employ 

both class data and explanations of limited areas. 

 

In this paper, we provide a system for categorizing 

different thoracic illnesses using X-ray images. The 

literature study claims that the CNNs utilized a lot of 

data, although there isn't much data accessible for 

medical imaging. Additionally, CNN performance is 

decreased by not taking into account the spatial 

orientation of the input picture. So, for the objective 

of classifying thoracic illnesses, we emphasize the 

CapsNN. 

 

The proposed architecture, which utilizes a CapsNN 

for X-ray imaging analysis of thoracic disorders, is 

designed for better representation of spatial 

relationships, robustness to image transformations, 

reconstruction-based regularization, and early 

diagnosis and intervention of the disorders. 

  

3.Methodology 
3.1Dataset 

Accurate data collection for research purposes is vital 

and energizing in a DCNN. Authorized open-source 

datasets      National Institute of Health (NIH CHXR 

dataset and COVID-19 CHXR Dataset) that are 

publicly available for the disease detection 

competition were used to get the thoracic sickness 

dataset for this research. THE NIH CHXR dataset is 

a subset of the ChestX-ray14 dataset that includes 

14,863 labelled CHXR images from the NIH Clinical 

Center [32]. It is commonly used for training and 

evaluating deep-learning models for thoracic disease 

classification. The dataset includes X-ray images of 

patients with various thoracic diseases, such as 

pneumonia, TB, Lung nodules, and other 

abnormalities [33]. The images are annotated with 

binary labels indicating the presence or absence of 

each of the 14 thoracic diseases, allowing for 

supervised training of deep learning models. The 

COVID-19 CHXR Dataset is a specialized dataset 

that focuses on the CHXR images of patients with 

confirmed or suspected COVID-19 infections. It is 

designed specifically for research related to COVID-

19 diagnosis using X-ray imaging. The dataset 

typically includes X-ray images of patients' chests, 

annotated with labels indicating the presence or 

absence of COVID-19 infection [34]. We categorized 

the dataset into four groups using the concepts of the 

capsule network: normal, pneumonia, TB, and 

COVID-19. The total number of images in training 

and testing datasets is 2291 and 752 respectively in 

Table 1. The four labels on this package stand for the 

four distinct disease categories that were used to 

classify and forecast thoracic diseases. 3043 CHXR 

images in total were compiled as a dataset for this 

research. 

 

Table 1 Train and test data set split 
S. No.   Classes Training images Testing images 

1 Pneumonia 996 349 

2 Covid 161 56 

3 TB 99 39 

4 Healthy 1035 306 

 Total 2291 752 

 

The ratio of the training dataset to the testing dataset 

for the collected photos is 80:20. Every collection of 

photographs is in the uncompressed portable network 

graphics (PNG) format and is a series of grey-scale 

pictures. We prepared a thorough description of the 

various case features after collecting the data 

consistently. Figure 2 represents the sample images 

of all four disease categories. Both lung textures 

thickened in Figure 2(a). The left lung's lower lobe 

has consolidated. That means bacterial pneumonia 

should be determined to be the cause of the patient's 

symptoms. 

 

The frosted glass-like structure with hazy borders that 

can be seen at the edge of the pulmonary arteries in 

Figure 2(b) is readily apparent. There is widespread 

air turbidity and uneven patchiness in lesions. In 

conclusion, a patient with COVID-19 has to be 

identified. White arrowheads in Figure 2(c) indicate 

an infection in both lungs, whereas black arrows 

indicate the development of a cavity. TB is seen on 

this CHXR. In Figure 2(d), there were no 

parenchymal lesions and clean veins in both lungs 

[35]. Both lungs exhibited a small hilum, and there 

were no nodules or bump shadows to be detected. 
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Figure 2 Classified X-ray images 

 

3.2Data preprocessing 

When employing various scanning tools and 

procedures, there will undoubtedly be some variation 

in terms of challenges related to data resolution, 

image size, image definition, and others [36]. We 

suggest some pre-processing steps for the CHXR, 

which are detailed in Figure 3. Pre-processing 

reduces the impact of data heterogeneity on the 

effectiveness of networks. The original CHXR image 

is first converted to a grey scale, and to boost local 

contrast and gain additional image details, histogram 

equalization is used. Data augmentation technique 

will be carried out after the CHXR image processing 

for image improvement. Data augmentation 

techniques ought to be as arbitrary as feasible to 

produce more useful training data [37]. 

 

 
Figure 3 Data preprocessing 

 

The initial step involves acquiring the CHXR report 

images that are unmarked and unannotated. These 

images are then associated with four separate 

directories, each representing a distinct subtype of 

thoracic diseases [38]. To facilitate categorization the 

authors labelled and annotated all the images in their 

respective categories. The directory names employed 

by the authors include terms such as "pneumonia," 

"Covid," "TB," and "normal" to indicate the different 

types of images contained within them. The obtained 

CHXR images exhibit varying sizes and grayscale 

intensities. To overcome this challenge, image 

processing techniques are employed to standardize 

the size, shape, and dimensions of all the CHXR 

images. The images are processed using the Tensor 

Flow API and the Python Keras API, ensuring they 

are uniform in size, measuring 256 x 256 pixels, and 

displayed as grayscale images. Additionally, all the 

X-ray images are annotated to facilitate classification 

and detection tasks. This dataset contains some 

noises that are removed by using various steps, as 

shown in Figure 4. 

 

 
Figure 4 Steps for noise reduction 

 

The input X-ray image may contain various types of 

noise and artefacts. Preprocessing steps, such as 

resizing and normalization, are applied to prepare the 

image for further processing. The CapsNN which 

consists of multiple capsule layers is the core 

component of architecture. It extracts and encodes 

hierarchical visual features from the input image. The 

CapsNN outputs a de-noised X-ray image, which has 

undergone noise removal based on the learned 
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representations. Post-processing steps, such as 

contrast adjustment or sharpening, can be applied to 

further refine the de-noised image if necessary. The 

de-noised X-ray image can be used for various 

diagnostic tasks, including disease detection, 

classification, or segmentation. 

 

A histogram is a graphical representation of the 

distribution of pixel intensity values in an image. In 

the context of X-ray images, a histogram can provide 

valuable insights into the overall intensity 

distribution, which can be useful for image analysis 

and processing tasks [39]. Python and OpenCV are 

used to implement the unique implementation 

method with the help of Google Colab. Histograms 

are used to compute the pixel intensity values using a 

histogram function or method provided by the image 

processing library. The histogram function will return 

the frequency of occurrence of each intensity value in 

the image. To create a single-channel picture, grey-

scale processing is first applied to the original three-

channel CHXR images [40]. After pretreatment, the 

details on the CHXR image were more evident, the 

histogram was more balanced, and the lung shape 

was more prominent. A selection of typical fixed-

pixel-sized illustrations of pictures from all four 

categories is shown in Figure 5. 

 

 
Figure 5 Original CHXR and its histogram 

 

3.3Proposed framework 

The novelty of X-ray imaging analysis for early 

diagnosis of thoracic disorders using a CapsNN in a 

deep learning approach can be attributed to some 

potential elements. Figure 6 depicts the entire 

framework's suggested structure. First, radiographs 

are pre-processed to achieve data normalization 

which addresses the issue of image heterogeneity 

between various dataset resources [41]. The 

segmentation network then receives the pre-

processed data and extracts the thorax portion of the 

CHXR images. To determine the type of sickness 

depicted in the X-ray image, the classification 

network's DenseNet component collects specific 

information from the thorax region and provides the 

features to the capsule network [42]. The proposed 

architecture for X-ray imaging analysis using a 

CapsNN is introduced to address the need for early 

diagnosis of thoracic disorders. The goal is to 

leverage deep learning techniques to accurately 

classify thoracic diseases at an early stage, enabling 

timely intervention and improving patient outcomes. 

The novelty of the proposed approach lies in the 

utilization of a CapsNN for thoracic disease 

classification. The key benefits of using this model 

architecture for thoracic disease analysis are 

hierarchical feature learning, better generalization, 

reduced sensitivity to image variations, and early 

diagnosis and timely intervention. The justification 

for using deep learning, specifically CapsNN, for 

thoracic disease classification is supported by the 

increasing success of deep learning in medical 
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imaging analysis. Deep learning techniques have 

demonstrated remarkable capabilities in image 

recognition, feature extraction, and classification 

tasks. CapsNN, with its unique architecture and 

capabilities, holds promise for improving the 

accuracy and efficiency of thoracic disease 

classification compared to traditional CNN-based 

approaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Model architecture 

 

3.4Image segmentation 

In this study, the lung contour must be extracted from 

the CHXR pictures using a segmented network. 

Finally, for the semantic segmentation component, 

the recommended technique is the U-Net model. The 

U-Net model generates an output quickly and 

precisely using pre-trained ResNet weights. This 

method helps medical professionals make a rapid 

diagnosis of several thoracic disorders. Encoder and 

decoder sets make up the U-Net model [43]. By 

focusing on the first half of the U-Net model, the 

encoder condenses the information in the picture into 

a latent space. The second part of the U-Net model 

contains a decoder that receives data from latent 

space and generates a mask-like representation of an 

image. The typical U-net model is shown in Figure 7. 

The created mask pinpoints the location of thoracic 

disorders in the CHXR picture. Computer vision and 

picture pre-processing are essential in medical 

imaging because the size and quality of the entire 

image's shot may vary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Classical U-net model 
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3.5Image classification 
3.5.1Feature extraction by convolution neural network 

Feature extraction is a crucial step in X-ray imaging 

analysis for early diagnosis of thoracic disorders 

using CapsNNs. CNNs are commonly used for 

feature extraction from medical images, including X-

ray images, due to their ability to automatically learn 

relevant features from raw pixel data. In the proposed 

deep learning approach using a CapsNN, the CNNs 

can be used as the feature extraction component. The 

CNNs consist of multiple layers, including 

convolutional layers, pooling layers, and activation 

functions, which work together to extract relevant 

features from the input X-ray images [44].  

 

The convolutional layers in the CNNs apply 

convolution operations to the input images, which 

involve applying a set of filters (also known as 

kernels) to the image pixels to extract local patterns, 

edges, and textures. This helps reduce the 

computational complexity and extract relevant 

features at different scales. The activation functions 

in the CNNs introduce non-linearity into the model, 

allowing the CNNs to learn complex patterns and 

representations from the input images. The extracted 

features from the CNNs are then fed into CapsNN, 

which is a type of neural network that is capable of 

capturing rich spatial relationships between features. 

Capsules are groups of neurons that represent specific 

features and their poses (i.e., orientation, size, etc.), 

and they are trained to learn the probability of the 

existence of a specific feature in the input image. 

This allows the CapsNN to capture more holistic and 

hierarchical features from the input X-ray images, 

potentially leading to improved accuracy and 

robustness in the diagnosis of thoracic disorders. 
3.5.2Feature extraction by capsule neural network 

CapsNN is a network that can extract geographical 

information as well as other critical attributes, 

preventing the information loss witnessed during 

pooling operations. Capsule gives us a vector with a 

direction as an output [45]. To preserve the locations 

of items and their attributes inside the image as well 

as simulate their hierarchical relationships, capsule 

networks have been created.  

 

The pooling layer in CNN brings important input 

from the background to the fore. The network may 

not be able to learn tiny features since data is pooled 

and sent to the subsequent layer. The neural output of 

CNN also includes a scalar value. Because capsules 

hold several neurons, they offer vectorial output with 

the same size but different routings. The parameters 

of the images are represented by a vector's routings. 

Scalar input activation techniques like Tangent, 

Sigmoid, and rectified linear unit (ReLU) are used by 

CNNs. On the other hand, squashing, which is 

defined in Equation 1, is a vectorial activation 

function used in capsule networks. 

   (‖  ‖
 
 (  ‖  ‖

 
))  (   ‖  ‖) (1) 

 

Where,    is the output of the j
th
 capsule, which is a 

vector representing the instantiation parameters (e.g., 

pose, orientation) of the corresponding entity in the 

input image.    is the input to the j
th

 capsule, which is 

the weighted sum of the predictions from the lower-

level capsules, usually obtained through a matrix 

multiplication between the input capsules and the 

weight matrices. ||  || represents the Euclidean norm 

(magnitude) of   , calculated as the square root of the 

sum of the squares of its elements. 

 

The weighted sum of the prediction vectors (Uj|i) in 

the capsules placed in the lower layers, except the first 

layer of capsule networks, is used to determine the 

total input value of capsule Sj in Equation 2. The 

weight matrix (W) and a capsule's output (Oi) from 

the lowest layer are multiplied to create the prediction 

vector (Uj|i) (Wij). 

            (2) 

 

Where    is the input value to the j
th

 capsule.    is the 

weight matrix associated with the j
th

 capsule, which 

determines the strength of the connections between 

the input capsules and the j
th
 capsule.    is the output 

vector of the lower-level capsules that connect to the 

j
th

 capsule, typically obtained from the output of the 

previous layer or capsule. 

 

A margin loss function is described in Equation 3 and 

used to train the capsules by encouraging them to 

produce output vectors that meet certain criteria of 

magnitude or parameters. 

         (    ‖         )
    

(    )     (  ‖      )
   (3) 

 

Where,    is the margin loss for the k
th
 capsule.    is 

the target or reference value for the k
th

 capsule, which 

represents the presence or absence of the predicted 

entity in the input image.    is the output vector of the 

k
th

 capsule, which represents the instantiation 

parameters (e.g., pose, orientation) of the 

corresponding entity in the input image. ||  || is the 

magnitude of the output vector   . m is a margin 

hyperparameter that determines the desired distance 

between the output vector and the target or reference 
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vector.   is a regularization hyperparameter that 

controls the trade-off between margin-based penalties 

and regularization. The max () function represents the 

element-wise maximum function, which ensures that 

the margin loss is only computed for capsules that 

produce output vectors outside the desired margin. 
   

4.Results 
4.1Performance metrics for classification 

The classification phase can recognize the values of 

true positive (TP), true negative (TN), false negative 

(FN), and false positive (FP), according to the 

confusion matrix, Addition of the aforementioned four 

variables will yield accuracy, precision, recall, 

specificity, and the F1 score [46].  
4.1.1Sensitivity (Recall, true positive rate) 

Sensitivity, also known as recall or TP rate, measures 

the proportion of TP cases (i.e., correctly predicted 

cases of the thoracic disease) out of all actual positive 

cases. It reflects the model's ability to accurately 

identify cases of thoracic disease (Equation 4). 

              (     )⁄   (4) 
4.1.2Specificity (True negative rate) 

Specificity, also known as true negative rate, 

measures the proportion of TN cases (i.e., correctly 

predicted cases without the thoracic disease) out of all 

actual negative cases. It reflects the model's ability to 

accurately identify cases without thoracic disease 

(Equation 5). 

              (     )⁄   (5) 
4.1.3Precision (Positive predictive value) 

Precision, also known as a positive predictive value, 

measures the proportion of TP cases out of all positive 

predictions made by the model. It reflects the model's 

accuracy in predicting positive cases of thoracic 

disease (Equation 6). 

            (     )⁄   (6) 
4.1.4Negative predictive value 

The negative predictive value measures the proportion 

of true negative cases out of all negative predictions 

made by the model. It reflects the model's accuracy in 

predicting negative cases without thoracic disease 

(Equation 7).  

                             (     )⁄  
     (7) 
4.1.5F1-Score 

The F1-Score is the harmonic mean of precision and 

sensitivity and provides a balanced measure of both 

precision and sensitivity. It is a single value that 

combines both precision and sensitivity, with higher 

values indicating better performance (Equation 8). 

             (                       ) ( 
Precision +   Sensitivity)   (8) 

 

To construct the disease detection screening system, 

an experimental configuration was established 

utilizing 3×3-sized convolutional filters. These filters 

are utilized to identify distinctive features and 

components within an image. Subsequently, a max 

pooling layer is applied after the convolutional filter. 

Each convolutional block consists of one 

convolutional filter and one max pooling layer. The 

CNN kernel processes the sum of pixels in an input 

image utilizing the padding approach. Neural network 

architecture consists of multiple layers, each with a 

specific number of neurons or filters.  

 

A summary of a sequential neural network model is 

described in Table 2. Each line describes a layer in 

the network along with its output shape and the 

number of parameters it contains. Here's a breakdown 

of the information provided: 

 Dense layer 1: This layer has an output shape of 

(None, 256) and contains 1,048,832 parameters. 

 Activation layer 1: Applies an activation function 

to the output of dense layer 1. The shape remains 

the same. 

 Dropout layer 1: Regularizes the output of 

Activation layer 1 by randomly dropping out a 

fraction of elements. It has no parameters. 

 Dense layer 2: This layer has an output shape of 

(None, 128) and contains 32,896 parameters. 

 Activation layer 2: Applies an activation function 

to the output of dense layer 2. The shape remains 

the same. 

 Dropout layer 2: Regularizes the output of 

Activation layer 2 by randomly dropping out a 

fraction of elements. It has no parameters. 

 Dense layer 3: This layer has an output shape of 

(None, 4) and contains 516 parameters. 

 Activation layer 3: Applies an activation function 

to the output of dense layer 3. The shape remains 

the same. 

 

Table 2 Model parameters and layers 
Layer(type)    Output shape Parameters 

Dense (None,256) 1048832 
Activation (None,256) 0 
Dropout (None,256)  0 
Dense (None,128) 32896 
Activation (None,128) 0 

Dropout (None,128) 0 

Dense (None,4) 516 

Activation (None,4) 0 

Total Parameters:               1082244 
Trainable Parameters         1082244 
Non-Trainable Parameters             0 
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To calculate the number of training steps per epoch 

utilized in the model, divide the sum of training and 

testing thoracic illness pictures over all four 

categories by the given batch size (Equation 9). 

            
                                 

          
 (9) 

 

Ten components of the data set were divided, nine of 

which were used for training and the tenth for testing. 

This process was applied to all parts, and the 

efficiency of the method was assessed by averaging 

all the parts. Since the data sets include photos from 

many sources, each image was first scaled down to 

128×128 pixels. Because of the great quality of the 

photos, it takes a powerful machine to analyze the 

images in their original size using capsule networks. 

Processing high-quality photos takes time and money, 

as it does in all traditional deep-learning models. As a 

result, images have been scaled down to 128×128 

pixels [47]. When dealing with more than two classes 

in X-ray imaging analysis for early diagnosis of 

thoracic disorders using CapsNN, a multiclass 

confusion matrix is employed as a table to assess the 

performance of the classification model. It shows the 

number of correct and incorrect predictions made by 

the model for each class, as shown in Table 3. 

Performance is shown as the number of rows and 

columns in the classification matrix [48]. To achieve 

optimal performance in terms of accuracy, recall, and 

F1 score, the classification report for the 

convolutional model can be derived from the 

confusion matrix. Table 4 showcases the classification 

report, demonstrating the identification and 

classification of thoracic illnesses through this 

screening approach. 

 

Table 3 Confusion matrix 

P
r
e
d

ic
te

d
 

Actual 

 Covid TB Normal Pneumonia 

Covid 169 7 11 13 

TB 2 165 26 7 

Normal 1 34 156 9 

Pneumonia 6 2 3 189 

 

Table 4 Classification report 
T  Thoracic class Precision Recall F1 Score 

Covid 0.9458 0.821 0.88 

TB 0.787 0813 0.8 

   Normal 0.797 0774 0.785 

Pneumonia 0.878 0892 0.885 

 

With careful tuning of hyperparameters, the three-

block sequential model demonstrates exceptional 

performance. Hyperparameter optimization is 

essential for maximizing the model's effectiveness. 

Hyperparameters, which are set before training, play 

a crucial role in influencing the model's performance. 

In Figure 8, the model achieves a validation accuracy 

of 96.469% with 50 epochs and 44 steps, along with 

a training accuracy of 97.29%. 

 

 
Figure 8 Model performance and cross entropy loss 

 

5.Discussion 
A high validation accuracy of 96.469% and a training 

accuracy of 97.29% have been achieved by the 

suggested technique for diagnosing thoracic illnesses 

using X-ray images. These high accuracies show that 

the model performs well in diagnosing thoracic 

disorders based on the supplied information. The 

high accuracy of the model points to the fact that it 

has discovered important patterns and characteristics 

from the input images, allowing it to make precise 

predictions. Evaluation of the model's performance 

for various disorder classes has also benefited from 

the use of a multiclass confusion matrix and 

classification report. With this method, it is possible 

to fully comprehend the model's advantages and 

disadvantages when it comes to categorizing various 

thoracic disorders. Healthcare workers might spot 

regions where the model could have trouble correctly 

predicting certain groups of diseases by looking at 

the confusion matrix. This data can be useful for 

enhancing the model's performance in difficult 

circumstances or for creating tailored solutions. Due 
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to computational constraints, the study used a special 

dataset that included images that were scaled down. 

The model is generalizable to additional datasets and 

full-resolution pictures. It is advised to validate the 

suggested strategy on a variety of bigger datasets to 

evaluate how well it performs in various 

demographics and circumstances. Additionally, the 

model's sensitivity, specificity, and resilience to 

changes in data quality and imaging methods should 

be taken into account. Hyper parameter adjustment 

was important in further optimizing the suggested 

approach. The performance of the model is heavily 

influenced by hyper parameters, which are chosen 

before training. To maximize the model's 

performance, careful parameter optimization is 

advised. To identify the ideal configuration that 

produces the best results, this procedure comprises a 

methodical examination and change of hyper 

parameters, including learning rate, batch size, and 

network design. 

 

Limitations 

The study on X-ray imaging analysis for early 

diagnosis of thoracic disorders using a CapsNN 

approach has several limitations that can impact the 

generalizability, reliability, and applicability of the 

findings. Some considerable limitations of the model 

include dataset biases, limited sample size, data 

imbalance, variability in imaging quality, and limited 

clinical validation. 

 

A complete list of abbreviations is shown in 

Appendix I. 

 

6.Conclusion and future work 
In this study, a neural network-based model 

combining CNN and CapsNN was developed to 

detect thoracic diseases. The optimized CapsNN 

model outperformed other scenarios, achieving an 

accuracy rate of 96.58% and an F1-score of 97.08%. 

Future work involves the incorporation of 

explainable artificial intelligence (XAI) to improve 

outcome comprehension. The exploration of X-Ray 

and lung sounds as markers for thoracic ailments is 

planned. The integration of comprehensive X-ray 

datasets and established image classification models 

like VGG19 and AlexNet will enhance validation 

accuracy. Leveraging CHXR images demonstrates 

the potential for predicting and detecting various 

thoracic disorders. Additionally, there is an 

envisioned development of a user-friendly Android-

based mobile application for medical illness detection 

and self-diagnosis. 
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Appendix I 
S. No.   Abbreviation Description 

1 AUC Area Under the Curve 

2 AUC-ROC Area Under the Receiver Operating 

Characteristic 

3 CADS Computer-Aided Diagnosis Systems   

4 Caps-CNN Capsule with Convolutional Neural Network   

5 CapsNN Capsule Neural Network 

6 CHXR  Chest X-Ray 

7 CNN Convolutional Neural Network 

8 DCNN Deep Convolutional Neural Network 

9 DenseNet Dense Convolutional Network 

10 FN False Negative  

11 FP False Positive  

12 Grad-CAM Gradient Weighted Class Activation 

Mapping 

13 NIH National Institute of Health  

14 PNG Portable Network Graphics 

15 ResNet Residual Network 

16 ReLU Rectified Linear Unit 

17 RNN  Recurrent Neural Network 

18 TB Tuberculosis 

19 TN True Negative  

20 TP True Positive 

21 XAI Explainable Artificial Intelligence   
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