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1.Introduction 
Energy can be found in various forms in nature. 

Electricity has a significant place among the 

numerous forms of energy. It is necessary to discover 

an ideal infrastructure for certain pre-determined 

objectives by utilizing some appropriate setups. In 

other words, diluted energy must converge in the 

direction of some goal. However, it must be ensured 

that the exhaustion of energy from nature must not be 

destructive to the ecosystem since it is evidenced that 

humans have obliterated nature's self-balancing 

capacity in many areas in the drive for technology 

and other advancements [1]. Energy resources can be 

subdivided into two broad categories based on their 

potential availability: conventional and non-

conventional energy sources. Conventional energy 

sources are non-renewable energy sources. 

 

 

 
*Author for correspondence 

Conventional energy-generating systems burn fossil 

fuels or use hydropower. Non-renewable energy 

systems rely on a single source for electric power 

generation, such as coal, gas, hydropower, and 

nuclear power. The consumption of conventional 

energy sources by the surging population and 

industrial sector is depleting and exhausting them at a 

swift pace. Energy derived from these sources 

pollutes the environment severely. It has resulted in 

disasters in some scenarios.  

 

Non-conventional energy sources are renewable 

energy sources. The systems relying on these sources 

are known as renewable energy systems since they 

are revived by nature. These systems can produce 

electricity from a single source or numerous sources. 

The backup and storage systems play crucial roles in 

managing the energy fluctuations of hybrid power 

plants based on integrated renewable energy systems 

(IRESs) [2].  
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Abstract  
Establishing robust infrastructure and securing a sustainable power supply can be costly and time-consuming. Localized 

power generation from natural resources through integrated renewable energy systems (IRESs) offers a solution. This 

study explores the reliability and key statistics of an IRES incorporating solar photovoltaic modules, wind turbines, and 

battery banks. The failure and repair rates follow an exponential distribution due to the increased risk in integrated 

structures. Neural networks (NN), particularly the feed forward back propagation neural network (FFBPNN), enhance 

the consistency and precision of reliability parameters. The learning process of FFBPNN adjusts neural weights, 

improving parameter values. Utilizing the MATLAB algorithm, this study iterated until achieving accuracy close to 

0.0001. The proposed system's real-time operations can be effectively managed by analyzing operational costs and system 

sensitivity to different parameters. 
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Noticeably, urban and rural population uses mini or 

small solar photovoltaic (PV) battery with grid-

connected (on-grid) power systems to reduce 

monthly electric bills [3]. However, continuous 

electric power supply in deep rural and isolated 

locations that are not grid-connected (off-grid) is 

favored by IRES [37]. Non-conventional energy 

sources, like sunlight, wind, and water, are plentiful. 

Additionally, they are freely available in some ways 

from countless natural cycles. These energy sources 

do not pollute the environment and do not require 

expensive long-term maintenance due to their 

inherent natural properties. Therefore, the trend of 

green energy, which does not damage the 

environment or natural organisms, must be followed. 

Studies have reported that efforts are being made for 

zero carbon emissions during power generation [8]. 

 

Jurasz et al. [9] reported that small-scale hybrid 

power systems based on fluctuating renewable 

energy sources, like wind and solar, are becoming 

more and more common since they affect the 

environment less negatively, use less energy, and 

deliver more reliable electricity. The reliability of 

hybrid systems is influenced by the complementary 

nature of the sources. The increased complementarity 

improves the system's ability to carry the load (L). 

Battery bank (BB) or other forms of energy storage 

can be added to improve the system’s reliability. 

However, the effect of complementarity on reliability 

declines as the storage capacity increases [9, 10]. 

  

This study emphasized on a small standalone IRES 

that is useful for rural and semi-urban areas facing 

power fluctuations and cost issues. PV-battery grid-

connected modules are popular and commonly used 

in households and industries [3]. Although they may 

provide a seamless power supply, they have high 

initial establishment cost and maintenance. The 

additional load on the grid increases during the 

charging of batteries. Sometimes failures occur due 

to irregular voltage and high charging speed because 

they decrease the life of batteries. It is more difficult 

to regulate and supply electric power continuously in 

rural and remote areas because transmission lines are 

unable to bear the load of modern lifestyle appliances 

and have poor maintenance [6, 7]. Therefore, 

dependence on these on-grid systems is risky. The 

objective of this article was to analyze an 

independent and reliable system with easy operation, 

lower failure rate, and less complex configuration. 

The proposed IRES with PV-BB-wind turbine (WT) 

worked off-grid with a uniform/controlled charging 

rate. The high initial costs would be compensated in a 

few years. 

 

This study highlighted the reliability, cost, and 

sensitivity of an IRES, which was composed of 

advanced devices like bifacial/monocrystalline PV 

module, vertical axis WT (Darrieus, Savonius type), 

highly durable industrial grade solar compatible 

batteries, and an intelligent controlling unit for 

smooth operation. Earlier reported studies used 

polycrystalline PV and traditional WT, which had 

poor efficiency [3]. Section 2 of this article reviewed 

the previously reported studies to provide a basis for 

this study. For a better explanation, section 3 

discussed the system description, necessary initial 

assumptions/boundaries, development and solution of 

mathematical model with transition diagram, and 

flow of algorithms. Section 4 analyzed the results 

obtained through section 3, which discussed 

important reliability parameters in detail with data 

tables and supporting graphics. Section 5 discussed a 

comparative analysis of components and results 

derived from mathematical model of IRES, 

limitations of the system study are also included in 

this section.  Section 6 stated the conclusions drawn 

from this study and gave suitable recommendations. 

The future work/scope and applications are also 

discussed in this section. 

     

2.Literature review 
Until now, many studies have been reported on off-

grid IRES reliability, maximum yield, design, and 

size at reasonable investment costs. When we rely on 

a single source for electric power generation, we 

experience voltage variations and power supply 

instability owing to technical faults [11], 

environmental breakdowns, and the lack of source 

availability. This fact drove the notion of IRES [12]. 

Figures 1 and 2 depict the availabilities of average 

solar radiation and wind speed. Northern India has a 

good amount of sunlight and sufficient wind speed 

for the setup of a small rooftop WT (e.g. Tulip or 

Helix type). 

 

Pradhan and Karki [13] assessed the probabilistic 

dependability of an off-grid small hybrid electric 

system based on PV-wind for electric power supply 

in Nepal's rural villages [9]. Hydro storage-based 

IRESs may be better options for isolated zones [14], 

while IRESs with PV-WT are significant for areas 

more than 50 kilometers from the electric power 

supply grid. Negi and Mathew [15] conducted a study 

hybrid renewable electric power generation systems 

and focused on sustainability by highlighting several 
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aspects of the IRES mechanism, sizing, system 

optimization, storage capabilities, and management 

[16].  

 

Amuta et al. [6] proposed the architecture of a PV-

wind-battery system in Zanjan province of Iran to 

enhance the reliability of power supply to load with 

real-time data related to renewable source availability 

[9]. They used the current cost as an objective 

function to reduce investment, replacement, 

operation, and maintenance expenses in IRESs. Liu 

al. [17] demonstrated that the most suitable setup to 

meet rural power consumption requirements was a 

standalone hybrid PV-battery backup system. While 

considering the dependability index (loss of load 

likelihood), the goal was to reduce the total lifecycle 

cost (TLCC).The findings showed that the optimal 

number of PV panels and batteries decreased, but the 

TLCC and the cost of system components increased 

with the rise in the reliability index [18]. 

 

 
Figure 1 Average solar radiation                                Figure 2 Average windspeed 

 

Reliability is defined as the probability of systems 

and their components performing their tasks 

adequately for the intended operating period [19, 13]. 

Narula et al. [20] investigated the likelihood that 

South Asian countries would meet 100% of their 

regional energy demand by 2030 by increasing 

reliance on power productionbased on IRESs. Patel 

and Singhal [21] created and verified the IRES model 

using resources close at hand. Additionally, they 

asserted that distribution losses and component size 

impacted the dependability of the system 

considerably. Sachin and Anand [12] and Ram et al. 

[22] studied the fundamentals of reliability analysis, 

reliability improvement techniques of the electrical 

power distribution system employing electric 

vehicles (EV) and energy storage systems, and 

reliability improvement approaches in wind-

integrated power systems. They also discussed the 

dependability effects on reactive power, unit 

commitment, and protective systems. Another 

discussion is done on uncertainty in the management 

of processes involved in the electrical power 

generation unit then reliability evaluation in 

distribution systems is well described. An electrical 

energy power system is efficient if it can supply 

reasonably continuous and quality electric power to 

load [23]. Ishani et al. [24] described hybrid 

renewable energy systems (HRES) for household 

purposes, which included microprocessors to harness 

the power of the sun and wind. The project was 

accomplished according to the available electric 

powerline. The batteries of the system were charged 

using solar or wind energy. Microcontrollers were 

crucial to system control through a maximum power 

point tracking (MPPT) module or a small alternator. 

Power sources and loads inside the system were 

monitored and regulated in real-time. Roy et al. [25] 

extensively analyzed a hybrid system involving wind 

and solar-based components from the perspectives of 

power architectures, mathematical modeling, power 

electronic converter topologies, and design 

optimization approaches. They studied numerous 

hybrid energy storage system coupling techniques, 

outlining their critical pros and cons. This was done 

to lower the uncertainty of HRES because including 

an energy storage system could reduce it even more. 

Different IRES power converters and cutting-edge 

control techniques have been studied to examine 

various combinations of energy sources, modeling, 

and topologies of power converters, size, and 

optimization techniques used in hybrid systems [26, 

27]. The challenges of technology and IRES-related 

research were also taken into account. Kallio and 

Siroux [28] looked at improving solar-based micro-

cogeneration systems and micro-cogeneration-based 

HRES s. In light of the case study's findings, the 
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maximum thermal and electrical reliabilitieswere68% 

and 70%, respectively. The study suggested that the 

optimized PV/battery/thermal storage system could 

not meet the entire energy demand, needing 

additional sources of heat and power. Jha et al. [29] 

proposed a dual-energy generating system integrated 

with a grid to reduce energy waste. The load data was 

compiled from several areas of Rajasthan, India. The 

best grid configuration was created using net present 

cost and cost per unit of energy. Other elements, 

including inverter optimization, wind energy, and tilt 

angle optimization for PV arrays, were also used to 

boost the system's dependability and stability [30]. 

Sensitivity analysis was carried out to examine the 

impact of actual fluctuations in capital costs on the 

established system economy. The simulation results 

indicated that the average costs of producing power 

using diesel-based and off-grid systems could be 

reduced by up to 20% by assuming a 10% annual 

capacity shortage allowance. According to the cost 

study, establishing the proposed framework would 

cost significantly less than other systems. The most 

popular systems are wind/solar-PV, wind/solar-

PV/diesel, and solar-PV/diesel, with and without 

battery backup, with popularity ratings of 28%, 22%, 

and 21%, respectively. Remote villages are the most 

popular among users, followed by islands and 

communication towers. The average unit prices for 

wind/solar-PV, wind/solar-PV/diesel, and solar-

PV/diesel are about $0.458, $0.355, and $0.349, 

respectively. 

 

This study rendered a reliability analysis of systems, 

such as PV modules, WT units, energy storage units, 

and converters, with the help of various 

failures/repair parameters using the feed forward 

back propagation neural network (FFBPNN) of the 

neural networks (NN) [31, 32]. The reliability of the 

systems is estimated using many popular 

methodologies/techniques, such as regenerative point 

technique, supplementary variable technique [19], 

stochastic reward nets, and Petri nets. Although these 

are routine procedures for accurately estimating 

reliability indicators, the present demand requires 

improving the output to optimization and reduced 

error. Hellel et al. [33] used the deterministic and 

stochastic Petri nets to explore the dynamic behavior 

in the performance of various renewable energy 

generating systems (mono or multi-source) in terms 

of reliability and availability of units. 

 

The integration and combination of renewable energy 

sources are gaining popularity over time. This study 

provided an overview of the technologies of HRES, 

their key problems and design-stage difficulties. The 

power generation technology choices and unit sizing, 

system layouts, and energy management and control 

were also discussed. Additionally, applications of 

hybrid energy systems, their benefits, drawbacks, and 

challenges, along with the overview of energy 

storage methods for renewable energy systems, were 

described. This study highlighted the future 

developments of hybrid energy systems, promising a 

sustainable option for power generation [16].  

 

Sun et al. [34] analyzed two different IRESs to meet 

the electricity needs of a sizable office complex in 

Changchun. A comparison between the two was also 

provided to determine the best capacity of the 

suggested IRESs. The first and second IRES had load 

requirements of 5,000 kWh/d. The first IRES was 

made up of a solar PV, a WT, and a BB. The second 

IRES were made up of a solar PV system, a WT, a 

BB, an electrolyzer, and a hydrogen tank. Tong et al. 

[35] stated that solar and wind sources could supply 

at least 72% of the immediate demand for power 

without extra annual generation or energy storage in 

major countries if systems were configured to fulfill 

time-integrated annual electricity consumption and 

transmission restrictions were ignored. According to 

earlier studies, a solar and wind power system could 

meet 85% of the total electricity demand in the 

contiguous U.S. Solar and wind resources could 

attain higher reliability levels by introducing energy 

storage, boosting the installation capacity (i.e., 

producing power in excess of annual demand), or 

pooling resources from adjacent locations. Srivastava 

[36] suggested that the most effective use of PV-WT 

technology was for off-grid services, which could 

reach remote areas without the need for costly 

electrical network expansion. As a result, standalone 

systems powered by renewable energy sources have 

gained popularity. Therefore, IRES is the best option 

as it has significant performance and cost benefits, 

and can be customized to meet the needs of different 

end users [37]. 

 

Memon et al. [38] showed that a BB was required to 

store excess energy, primarily from solar panels, and 

to return this energy during times of deficiency to 

guarantee high reliability in standalone cases. The 

battery backup system could be abandoned if its 

reliability fell below 90% without sacrificing 

economics. The ideal hydroelectricity configuration 

was the least expensive energy source operating at 

full capacity regardless of reliability levels. They 

discovered that payments received by the system for 

the excess electric energy supply had a minor effect 



Nitin Kumar Sharma et al. 

62 

 

on the leveled energy cost. The gain could be 

improved by increasing the hardware size or supply.  

In 1943, neurophysiologist Warren McCulloch and 

mathematician Walter Pitts designed a computational 

model for NN. However, Ivahnenko and Lappa 

published the first functional multi-layered network 

in 1965. Artificial NN or simply NN are 

computational systems like the networks of 

biological neurons constituting the human brain. The 

neurons could be assumed to be processing units 

connected through “synaptic weights” and form the 

network architecture [39]. This paper used a multi-

layered architecture of NN with three layers, as seen 

in Figure 3[40]. The input or the first layer received 

input in the problem's context. The hidden or second 

layer focused on updating the weights between the 

first and third layers. The output or third layer 

showed the optimization results. 

 

 
Figure 3 NN structure 

 

Fast learning from experience and error-minimizing 

capabilities make NN dynamic and predictive for 

new outcomes. Earlier research was primarily based 

on classical optimization techniques with the 

predominant use of linear programming for 

simplified models and various non-linear 

programming methods for detailed IRES models 

[38]. Kumar and Palwalia [41] suggested that 

optimization techniques using an artificial 

intelligence approach could optimize global optimal 

power generation using off-grid IRES.  

 

According to the literature, hybrid power systems 

have various combinations in practice, like fossil 

fuel(diesel/petrol)-battery-grid, PV-battery-grid, and 

hydro-PV-battery, where fossil fuel-based systems 

increase pollution, face source shortage, and are 

highly priced [42]. Hydro and thermal sources have 

limited availability and suitability while considering 

dependability on the grid. Coal-based plants 

experience irregular supply and shortage of coal. 

Hydropower plants degrade or breakdown due to 

natural calamities like floods, heavy rain, and 

landslides. Also, grid-based electric power has high 

prices due to input, maintenance, and transmission 

costs. As the grid is the primary electricity source, it 

faces high demand, line losses, and irregular load 

shading. Therefore, grid-based hybrid systems are 

unreliable, especially in remote areas. 

These observations provided a basis for an 

independent power system like PV-WT-BB, enabling 

continuous power supply due to complementarity. 

This system is more reliable in remote rural areas 

because it is customizable according to the required 

load and cannot breakdown due to faults in other 

networks/units as it is off-grid. Its small setup has 

easy and low maintenance due to MPPT technology, 

providing optimal and regulated charging/supply 

[36]. 

 

This study proposed a neural architecture-based 

model to investigate a standalone IRES. Numerical 

examples, along with the original and optimized 

reliability, sensitivity, and profit, were provided to 

emphasize the findings [43]. Implementations of NN 

were correlated with different disciplines in the 

present scenario, such as pattern recognition, system 

optimization, and deep learning. It consisted of 

several methods, out of which FFBPNN was 

preferred to enhance the performance of the system. 

Although it is more flexible to modify the IRES as 

per the local availability of natural resources, a 

balance between the efficiency of units, 

establishment costs, and resource availability must be 

maintained. More accuracy is required to determine 

the reliability of the system and maximize its 

availability. 
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3.Method 
3.1System description 

For decades, the power crisis has been a global issue. 

However, IRESs are gaining popularity due to the 

advancements in the renewable energy sector. An 

energy-generating system is an integrated one if it 

consists of at least two or more renewable energy 

systems. The integrated systems may have several 

combinations of subsystems as per the localized 

availability of natural resources, such as solar 

radiation, wind velocity [44], hydropower, tide and 

waves, geothermal energy, and biomass[6, 7, 35]. All 

these sources are combined reasonably to provide a 

highly efficient and continuous power supply. There 

are two types of IRESs based on the use of grid 

power: 

1.Standalone renewable energy systems (Off-Grid 

power systems) 

2.Grid-connected renewable energy systems (On-

Grid power systems) 

It also depends on a targeted remote area, 

establishment cost, and environmental conditions.  

This study of a standalone IRES considered a power 

generation system consisting of five units described 

as follows (Figure 4): 

 

 
Figure 4 Block diagram of a standalone IRES 

 

Unit1: PV module: This unit produced an electric 

current when exposed to solar radiation. It is 

generally placed facing the south direction. The solar 

modules have different arrangements of silicon 

semiconductors. These modules may be mono- or 

polycrystalline based on the silicon source. 

Monocrystalline modules are slightly more efficient 

but costlier than polycrystalline modules. Presently, 

solar modules are available to supply direct current 

(DC) or alternating current (AC) as per requirements. 

This study considered DC supply modules.  

 

There are many reasons affecting the efficiency of the 

modules, decreasing their working capacity and even 

failing the power generation of the whole unit [45]. 

Some of the popular reasons are as follows: 

a) Impure or low-quality manufacturing material of 

the PV cell. 

b) Surrounding temperature of the module. 

c) Bad environmental conditions, like decreased solar 

intensity, cloudy skies, and rain. 

d) Wrong direction of sunlight exposure and setup 

altitude. 

e) Effects of shading. 

f) Wear and tear due to wind.  

Unit2: WT unit: A WT, installed in wide-open 

windy areas, generates electric current using the wind 

velocity at an optimum height. WTs are of two types: 

horizontal-axis and vertical-axis types, with their 

blades rotating parallel and perpendicular to the 

horizon, respectively. This study considered a small 

vertical-axis type WT because it is more efficient and 

works even at slow air speeds. Its multiple units 

could be used as required and fixed at various places 

due to its size. WTs may have fixed or variable 

speeds according to wind availability. Generally, WT 

generators with fixed speeds are used to produce 

electricity. Some conditions leading to failed or 

reduced power production from a WT are as follows: 

a) Wind velocity not in the range of 5 to 25 m/s. 

b) Fluctuations in wind velocity. 

c) Variability in the wind speed with height and areal 

energy distribution. 

d) Disturbances due to the tower shadow effect. 

Unit3: BB unit: It was a power storage facility 

connected to the control unit and operating in both 

directions. It was not connected directly to the PV 

and WT. It could store the surplus power when the 

PV and WT generate more power than the load 

demand. It could supply the stored power in the 
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future when a failure occurred in Units 1 or 2 or due 

to a shortage of supply. BB made a major 

contribution to improving the system reliability. 

However, BB may fail or work imperfectly due to 

voltage fluctuations, battery temperatures, poor 

battery maintenance, cross-connections between 

terminals, shelf life, or environmental faults. 

Unit4: Intelligent control unit (ICU): It is a setup 

of the convertor (DC/AC or AC/DC), and charges the 

controller systems. It was connected to the other four 

units of the IRES. The converter could function like 

an inverter or rectifier as per the charge flow 

direction. The ICU also consisted of devices for 

voltage fluctuation control, charge control, and 

others. It was connected to the PV and WT, and it 

intelligently controlled the surplus current and 

electric power flow to provide a seamless power 

supply. The ICU would fail due to a subsystem fault, 

voltage fluctuations, fuse blow, short-circuit, or an 

overload.  

Unit5: L unit: It is the consumption segment of the 

system. It was connected to the ICU and received 

electrical power as per the demand profile. Generally, 

this unit fails due to factors like environmental 

failures, short-circuits, and voltage fluctuations. 

 

This study used the transition state diagram to create 

the probabilistic equations of the mathematical model 

for an IRES. NN algorithms were used to assess 

several key reliability indicators (Figure 5). Repairs 

and failures caused by faulty hardware or the 

environment were dispersed exponentially and used 

as synaptic weights in neural calculations. The back 

propagation algorithm used in NN to update outputs 

was described by Anderson [45] and other authors. 

The weights in multiple cycles were updated using 

the learning course of action in the back propagation 

of NN to improve the results of reliability parameters. 

Also, a method employing the back-propagation 

neural network (BPNN) technique was developed to 

forecast reliability, profit function, and corresponding 

.m file code in MATLAB. 

 

 
 

 

 

 
 

Figure 5 Transition state diagram 

 

3.2Assumptions 

3.1.1 At the start of the operation, every 

component/unit was in good and completely 

functional condition.  

3.1.2 The states were statistically independent for all 

components involved in the operation of the 

system. 

3.1.3 The system had five units: PV modules, WT, 

BB, ICU and L.  

3.1.4 The system operated at lower efficiencies if any 

one or two of the PV/WT/BB units 

malfunctioned. 

3.1.5 If the system was operated in a degraded state, 

malfunction of the power generating or battery 

units may breakdown or negatively affect the 

performance of other units. 

Operable 

state 

Failed State 
Degraded 

state 
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3.1.6 The IRES may fail completely if the 

PV/WT/BB units or the power control unit and 

load failed concurrently. 

3.1.7 The IRES may potentially fail due to the 

environmental failure. 

3.1.8 The repair and failure rates of the system were 

distributed exponentially. 

3.1.9 Synaptic weights corresponded to the failures 

and repairs of the system. 

3.1.10 The repaired subsystem(s) would perform as if 

they were new. 

 

3.3Notations 

Pi (t) i
th

 state probability at time t,   
*         + 

Pi 

(t+t) 

i
th

 state probability at time (t+t),  
*         + 

1 PV unit failure 

2 Failure of the WT unit  

3 Failure of the BB unit  

4 Failure of the PV+WT unit 

5 Failure of the WT+BB unit 

6 Failure of the PV+BB unit. 

7 Failure of the PV+WT+BB unit. 

8 ICU failure 

9 Failure of the load unit  

10 Environmental failure 

11 System breakdown 

1 PV unit repair 

2 WT unit repair 

3 BB unit repair 

4 PV+WT unit repair 

5 WT+BB unit repair 

6 PV+BB unit repair 

7 PV+WT+BB unit repair 

8 ICU repair 

9 Load unit repair 

10 

Pup 

Pdown 

Environmental repair 

Probability of operable state 

Probability of  system breakdown state 

 

3.4Development of a mathematical model 

Using fundamental probability terminology, 

Equations 1-13 govern the behavior of the system, 

determining its characteristics and transition states, as 

follows: 

  (    )  (                 
     )  ( )       ( )     (1) 

 

  (    )  (                 
     )  ( )       ( )     (2) 

  (    )  (                 
     )  ( )       ( )     (3) 

 

  (    )  (                 )  ( )  
    ( )       ( )     (4) 

 

  (    )  (                 )  ( )  
      ( )       ( )   (5) 

 

  (    )  (                 )  ( )  
      ( )        ( )   (6) 

 

  (    )  (      )  ( )        ( )  
      ( )        ( )   (7) 

 

  (    )  (      )  ( )         ( )(8) 

 

  (    )  (      )  ( )         ( ) (9)  

   (    )  (       )   ( )   ,  ( )  
  ( )    ( )    ( )    ( )     ( )  
   ( )-         (10) 

 

   (    )  (                     
           )   ( ) 

  ,    ( )      ( )      ( )      ( )
     ( )      ( ) 

      ( )      ( )      ( )        ( )-    
     (11)  

3.5Method and solution 

The interconnected variables, layers of neural 

architecture, and the learning mechanism used to 

train the system were used to examine the complex 

global behavior displayed by the proposed structure. 

The back propagation algorithm was introduced in 

the 1970s to study the neural models/architectures, 

and out of many available learning algorithms, it is 

frequently used to train the FFBPNN architectures. 

This algorithm updated the network synaptic weights 

by back-propagating a gradient vector where each 

element was defined as the derivative of an error 

measure concerning a parameter. Generally, the error 

signals are defined by differences in actual and 

expected outputs from the network, mandating the 

inference of a set of targeted outputs for the training. 

Therefore, it may be claimed that back propagation is 

a supervised training rule. Consequently, supervised 

network training may be used to analyze and 

optimize complicated mathematical problems. Figure 

6 demonstrates the logical and step-by-step workflow 

of the FFBPNN algorithm. 
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Figure 6 Workflow of the FFBPNN approach 

 

The   inputs, included in the neural architecture seen 

in Figure 3, were characterized in terms of 

probabilities as shown in Equation 12: 

     ( );   *         +  (12) 

The neural outputs   in the system were represented 

by the probabilities as shown in Equation 13: 

     (    );    *         +           (13)  (13) 

 

The neural weight matrix governing the network set 

of sequences across the input and the hidden layers is 

as follows: 
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Again, the weight matrix between the output and the hidden layers is as follows: 
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The output equations obtained using Equations 1 to 

11 and weight matrices from Equations 14 and 15 are 

as follows: 

            ( )      (16) 

            ( )      (17) 

            ( )      (18) 

                      (19) 

                      (20) 

                      (21) 

                           (22) 

            ( )      (23) 

            ( )      (24) 

     (  )(  )      (  )     (  )   

  (  )     (  )     (  )     (  )   

   (  )       (25) 

     (  )(  )      (  )     (  )   

  (  )     (  )     (  )     (  )   

  (  )     (  )     (  )      (  )    (26) 

 

Transition states of the system could be classified as 

the up or down-states depending on whether they 

were in the operational or failure mode. The up-state 

and down-state probabilities of the system using 

Equations 16 to 26 wereas follows:  

                          

(         ( )   )  (         ( )   )  

(         ( )   )  (            

     )  (                 )  
(                 )  ( (  )(  )    

  (  )     (  )     (  )     (  )   

  (  )     (  )     (  )     (  )   

  (  )      (  )   )   (27)  

     ( )       ( )   (28) 

 

The reliability of the system could be stated as:  
                                  

     (29) 

The profit function could be given as follows:  

 ( )        ( )             (30) 
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Here             represent the costs of revenue, 

repair/ unit time, and system establishment, 

respectively. 

Pup(t) represents the probability for operable states. 

 

3.6Reliability-based sensitivity analysis 

The sensitivity of the system with respect to the 

failure of PV (  ), WT (  ), BB (  ), and 

environmental failure (   ) could be evaluated in 

terms of reliability. The relevant equations are as 

follows: 
    

   
     ( )      (31) 

    

   
     ( )      (32) 

    

   
     ( )      (33) 

    

    
   ,  ( )    ( )    ( )    ( )    ( )  

  ( )     ( )-     (34) 

 

4.Results  

This study had the following assumptions to examine 

the outcomes of the system under consideration: 

       *        +             
                   
            

                                     
            
 

Equations 28 and 29 provided unreliability and 

reliability, respectively. Their results are displayed in 

Figures 7 and 8 and are given in Table 1. Observing 

Table 1 and Figure 7, the reliability increased 

significantly in the first 100 iterations and then 

slowly till 624 iterations. At the last cycle reliability 

   ( )  reached .99 which is precise up to 0.0001. 

Also, from Figure 8 and Table 1, unreliability 

     ( ) decreased catastrophically in initial 

iterations and then slowly afterward. These results 

show that the system is highly reliable in early life 

and becomes stable during useful life. 

 

Equation 30 is used to compute the profit values. For 

the study and comparison of the profit values, the 

installation cost        units, revenue cost    
   units, and variable repair costs 

            and    units. Figure 9 and Table 2 

illustrate the profit function values derived from 

Equation 30. It is evident that the system remains 

profitable until the repair costs C2 reach 20, 50, and 

70 units. However, it is advisable to replace major 

components with new ones, as significant revenue 

losses become apparent when the repair cost C2 

exceeds 70 units. 

 

4.1Sensitivity analysis 

During investigations, it is observed that the claimed 

life of the PV module, WT is longer in comparison 

with the life span of batteries in BB. Therefore, BB 

may attract more failures in a certain duration which 

implies that the system is more sensitive to BB in 

comparison with WT and PV modules. As 

represented visually in Figure 10 and statistically in 

Table 3, the data obtained from Equations 31-34 was 

investigated to examine the sensitivity of the system 

corresponding to different failures. While it is 

minimum, moderate, and highly sensitive to failures 

in PV module, WT, and BB respectively. The graphs 

have shown that the system may face breakdowns 

under environmental failure during its whole early 

and useful life.  

 
Figure 7 Reliability vs. Iterations 
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Figure 8 Unreliability vs. Iterations 

 

Table 1 Reliability vs. Iterations 

 

 
Figure 9 Comparison between profit and time 

 

Table 2 Values of profit function for diverse repair cost over time/epochs 

Time/ Epochs 

Profit (values of C2 in units) 

80 70 50 20 

1 -126.006921 -116.006921 -96.006921 -66.006921 

25 -325.140773 -75.140773 424.859227 1174.85923 

50 -396.678434 103.321566 1103.32157 2603.32157 

Iterations 1 25 50 100 150 200 250 

   ( ) 0.6749 0.9581 0.9681 0.9759 0.9799 0.9824 0.9842 

     ( ) 0.3251 0.0419 0.0319 0.0241 0.0201 0.0176 0.0158 

ITERATIONS 300 350 400 450 500 550 624 

   ( ) 0.9856 0.9866 0.9875 0.9882 0.9888 0.9892 0.990 

     ( ) 0.0144 0.0134 0.0125 0.0118 0.0112 0.0106 0.010 
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Time/ Epochs 

Profit (values of C2 in units) 

80 70 50 20 

100 -506.24321 493.75679 2493.75679 5493.75679 

150 -593.724443 906.275557 3906.27556 8406.27556 

200 -668.584393 1331.41561 5331.41561 11331.4156 

250 -734.995774 1765.00423 6765.00423 14265.0042 

300 -795.242926 2204.75707 8204.75707 17204.7571 

350 -850.738035 2649.26197 9649.26197 20149.2620 

400 -902.42628 3097.57372 11097.5737 23097.5737 

450 -950.976956 3549.02304 12549.0230 26049.0230 

500 -996.884441 4003.11556 14003.1156 29003.1156 

550 -1040.52612 4459.47388 15459.4739 31959.4739 

600 -1082.19776 4917.80224 16917.8022 34917.8022 

624 -1101.57176 5138.42824 17618.4282 36338.4282 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Sensitivity vs. Time 

 

Table 3 Sensitivity vs. Time 

   

    

   
 

    

   
 

    

   
 

    

    
 

0.01 0.00534 0.00534 0.005341 -0.040135 

0.02 0.01068 0.01068 0.010682 -0.08027 

0.03 0.01602 0.01602 0.016023 -0.120405 

0.04 0.02136 0.02136 0.021364 -0.16054 

0.05 0.0267 0.0267 0.026705 -0.200675 

0.06 0.03204 0.03204 0.032046 -0.24081 

0.07 0.03738 0.03738 0.037387 -0.280945 

0.08 0.04272 0.04272 0.042728 -0.32108 

0.09 0.04806 0.04806 0.048069 -0.361215 

0.1 0.0534 0.0534 0.05341 -0.40135 

0.11 0.05874 0.05874 0.058751 -0.441485 

0.12 0.06408 0.06408 0.064092 -0.48162 

0.13 0.06942 0.06942 0.069433 -0.521755 

0.14 0.07476 0.07476 0.074774 -0.56189 

0.15 0.0801 0.0801 0.080115 -0.602025 

0.16 0.08544 0.08544 0.085456 -0.64216 

0.17 0.09078 0.09078 0.090797 -0.682295 

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

S
en

si
ti

v
it

y
 

Time 

Sensitivity vs. Time 

Environment

BB

WT

PV Module



International Journal of Advanced Technology and Engineering Exploration, Vol 11(110)                                                                                                             

71          

 

   

    

   
 

    

   
 

    

   
 

    

    
 

0.18 0.09612 0.09612 0.096138 -0.72243 

0.19 0.10146 0.10146 0.101479 -0.762565 

0.2 0.1068 0.1068 0.10682 -0.8027 

 

5.Discussion 
The preliminary reliability of the system was 0.6749, 

according to Table 1. After a significant number of 

iterations or epochs, the gradient descent method of 

back propagation was employed in NN to update the 

weights of synapses that were used as failures or 

repairs. The reliability of the system reached a 

maximum of 0.99 in 624 iterations with an acceptable 

range of     . The corresponding unreliability values 

are also shown in Table 1. The reliability and 

unreliability values are depicted in Figures 7 and 8, 

respectively. The reliability of the system was 

improved iteratively, signifying the BPNN concept, 

specifically in complicated engineering systems. 

 

The profit function steadily increased with the 

iterations, as shown from the outputs of Equation 30 

and the data represented in Table 2. The comparison 

between profit and various repair costs is depicted in 

Figure 9. As depicted in Table 2, the profit function 

in each cycle had the maximum value for smaller 

repair costs, i.e., 20 units and when repair cost 

crosses 70 unit then it is an indication for major 

component replacement to improve the performance 

as good as new system.  It can stimulate the decision-

making of the system managers. A reasonable repair 

cost is a good option to maintain the system because 

the replacement costs for new components are a 

challenge in renewable power generation systems. 

Though continued research has decreased the prices, 

necessary components are still costly. To compare 

Mono and polycrystalline PV Modules, vertical and 

horizontal axis WT Table 4 and 5 are given below: 

 

Table 4 Comparison between PV modules 

 Cost  Efficiency  Advantage  Heat resistance 

Monocrystalline PV Expensive High Efficient and space saver High  

Polycrystalline PV Affordable  Less Medium cost and efficiency Low  

 

Table 5 Comparison between WT with vertical and horizontal axes 

 

The sensitivity of the system to the failures for the 

PV(  ), WT(  ), BB(  ), and the environment (   ) 
are shown in Table 3. When the system was exposed 

to various environmental obstacles during operation, 

like temperature, dust, clouds, and humidity, its 

performance/efficiency is hampered. The nature of 

sensitivity depicted in Figure 10 easily indicated that 

a standalone IRES was more sensitive to 

environmental failure, signifying the importance of 

the environmental conditions under which the 

proposed IRES was operated. 

 

As shown in Table 4 and Figure 11, the data 

collected for mono and polycrystalline PV modules 

of 100 Watts for 15 days recommended 

monocrystalline PV modules over ordinary 

polycrystalline PV modules. The monocrystalline PV 

modules were more efficient than the polycrystalline 

ones [4648]. The rotor power coefficient (CP) with 

respect to tip-speed ratio is slightly smaller for 

vertical axis WT (Darrieus rotor type) which makes it 

suitable for proposed model of standalone IRES. 

 

As illustrated in Table 5 and Figure 12, the power 

coefficient (CP) for vertical-axis wind turbines 

(Darrieus type) ranges from 0.3 to 0.4 with respect to 

a tip speed ratio of 4 to 6. In contrast, 2 and 3-bladed 

horizontal-axis wind turbines require a higher tip 

speed ratio to achieve a slightly increased rotor CP. 

 

Therefore, the less efficient small or medium-sized 

vertical-axis WT (Darrious type) were recommended 

over the more efficient large horizontal-axis WT 

because the advantages that they had low 

 Installation 

Cost  

Efficiency  Maintenance  

cost   

Space 

required 

Wind speed Advantage 

WT with 

vertical axis  

Low  Low/Medium Low  Rooftop Moderate to 

low  

Small size and 

components 

WT with 

horizontal axis 

High  High High  Large and 

open 

High Massive 

structure 
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maintenance, worked even in slow air velocities, 

were wind-direction independent, saved space, and 

required no yaw mechanism [49, 50]. Therefore, it 

was obvious that the proposed system was more 

reliable and eco-friendlier in overall performance and 

behavior than other off-grid combinations of hybrid 

renewable power generation systems. 

 

5.1Limitations 

This study is a mathematical overview of small-scale 

IRES in terms of reliability that can be expanded to 

examine further elements of its techno-economic 

study. It did not take into account the variation in 

electricity prices with the time of day because India 

currently does not use such a pricing structure. It may 

be necessary to impose time-dependent prices due to 

the increasing share of renewable energy sources. 

 

A complete list of abbreviations is shown in 

Appendix I. 

 

 
Figure 11 Power production performance 

 

 
Figure 12 Comparison of the efficiency of WT with vertical and horizontal axes 

 

6.Conclusion and future work 
This paper investigated the reliability, cost, and 

sensitivity of a standalone IRES featuring 

monocrystalline PV, efficient vertical-axis WT, and 

solar-compatible BB. The system proves reliable in 

remote areas lacking grid connectivity, with ample 

wind and solar resources. Connected to BB for 

backup during low production or electricity 

shortages, it minimizes breakdowns. While initial 

costs are high, ongoing research reduces expenses, 

and low maintenance, coupled with a recovery 

period, adds value. The system exhibits low 

sensitivity to BB and high sensitivity to 

environmental conditions, addressable with advanced 

components and AI-driven fault prediction. Scaling 

PV modules, WT units, and BBs can enhance 
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production and environmental benefits, fostering a 

reliable, eco-friendly future. This study advocates 

harnessing local natural resources to meet future 

demands for green electrical energy. Customizable 

vertical-axis WT can optimize power recovery in low 

wind speed areas, particularly in North India. The 

authors plan to hybridize WT with scaled solar PV 

systems for field testing and certification. The 

analysis and creation of wind/PV system models for 

small-scale power generation will be crucial for 

future studies. These findings provide a viable 

solution to energy challenges at local and global 

scales, encouraging key players to integrate PV and 

wind systems in remote locations. The proposed 

IRES concept could extend to meet high electric 

power demands for EV charging stations and battery-

swapping centers on highways, expressways, and 

remote routes. Further studies are essential to reduce 

operational costs, enhance maintenance, and develop 

efficient power banks and optimized 

control/conversion units for the renewable energy 

industry. A balanced prediction of load demand and 

supply management is crucial for establishing and 

operating an IRES. A standalone IRES with PV-WT-

BB emerges as a practical solution to fulfil electric 

power demands in remote areas, contributing 

significantly to sustainable and reliable electrification 

and overcoming the electrical energy crisis. 
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Appendix I 
S. No. Abbreviation Description 

1 AC Alternating Current 

2 BB Battery Bank 

3 BPNN Back-Propagation Neural Network 

4 CP The Rotor Power Coefficient 

5 DC Direct Current 

6 EV Electric Vehicle 

7 FFBPNN Feed Forward Back Propagation 

Neural Network 

8 HRES Hybrid Renewable Energy Systems 

9 ICU Intelligent Control Unit 

10 IRES  Integrated Renewable Energy System 

11 L Load 

12 MPPT Maximum Power Point Tracking 

13 NN Neural Networks 

14 PV Photovoltaic 

15 TLCC Total Lifecycle Cost 

16 WT Wind Turbine 
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