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1.Introduction 
The assessment of asphalt pavement condition is 

paramount for effective management of road 

infrastructure, with the omnipresent issue of cracks 

significantly impacting road usability and lifespan 

[13]. Cracks can stem from various factors, 

including vehicle loads, environmental conditions, 

and natural aging [3]. While timely detection of 

cracks is crucial for prompt and cost-effective 

maintenance, traditional manual inspection methods 

are labor-intensive, time-consuming, and subjective 

[4]. 

 
*Author for correspondence 

 

The challenges in the existing literature have 

revolved around the limitations of manual inspection 

methods, which have been hindered by their time-

consuming and subjective nature [4]. Additionally, 

the inherent diversity in road cracks, including 

variations in size, shape, orientation, and texture, has 

posed challenges for detection algorithms [5]. 

Elements like patches, markings, shadows, and debris 

on the road surface have further complicated accurate 

crack detection, leading to potential false positives or 

missed detections [5]. 

 

The motivation for this study has stemmed from the 

inherent limitations of manual inspection methods 

and the need for more efficient crack detection 

Research Article 

Abstract  
Cracks in asphalt pose significant safety risks to roads and highways, necessitating effective and efficient inspection 

methods. Manual inspection approaches are not only costly but also prone to errors. To address these challenges, this 

paper introduced an integrated model for automated road crack classification. The methodology comprised four key 

steps: image segmentation, noise reduction, feature extraction, and crack classification. In the initial stages, the paper 

presented a novel forest optimization algorithm (FOA) tailored for optimizing the Otsu thresholding method. Leveraging 

a forest-based optimization approach, this algorithm harnessed the collective decision-making power of multiple trees to 

identify the optimal threshold value for image segmentation. Subsequently, a hybrid feature extraction approach was 

proposed, combining histograms of oriented gradients (HOG) and Harris corner detection. HOG captures texture 

information through the analysis of local gradients, while Harris corner detection identifies distinctive features. The 

fusion of these techniques enhanced the discriminative power of the extracted features, providing a robust image 

representation for subsequent classification tasks. To fine-tune the hyperparameters of the k-nearest neighbors (kNN) 

classifier, the paper incorporated Bayesian optimization. This approach efficiently explored the hyperparameter space, 

identifying optimal parameter settings that enhance the classification performance of the model. By combining the 

optimized kNN classifier with the extracted features, the integrated model aimed to achieve accurate image classification 

for segmented regions. Experimental results indicate the efficacy of the proposed hybrid model, demonstrating the highest 

accuracy at 98.10%. This outcome signified the model's effectiveness in precisely detecting and classifying cracks in 

asphalt roads. The achieved accuracy, coupled with the systematic integration of novel algorithms and approaches, 

validated the potential of the proposed model to significantly improve the efficiency of crack detection processes. The 

integrated model showcased promise for automating road crack classification, reducing reliance on manual inspection, 

and providing accurate results crucial for road safety and maintenance. 

 

Keywords 
Bayesian optimization, Forest optimization algorithm, Harris corner, Histograms of oriented gradients, kNN. 

 



Shivangi Mishra et al. 

220 

 

models in real-world applications [4]. The motivation 

has been further fueled by the potential savings of up 

to 80% in maintenance expenses through the precise 

identification and early-stage addressing of cracks 

[57]. The automation of crack recognition and 

analysis has been seen as a viable solution to 

streamline examinations and overcome the challenges 

posed by manual methods [8]. 

 

The primary objective of this paper is to develop a 

robust and precise model for automatic recognition 

and classification of cracks in asphalt pavements. 

This model integrates advanced techniques for image 

feature extraction with machine learning algorithms 

to improve efficiency and reliability in crack 

detection. The specific objectives include exploring 

various image feature extraction techniques, 

employing machine learning algorithms; artificial 

neural network (ANN) [9], support vector machines 

(SVM) [10], and random forest (RF) [11] for crack 

pattern classification, and assessing the performance 

of the proposed model based on its ability to correctly 

classify crack patterns in accordance with ground 

truth labels. 

 

This paper contributes to the field through the 

introduction of a novel forest optimization algorithm 

(FOA) [12] for otsu thresholding [13], a hybrid 

feature extraction approach using histograms of 

oriented gradients (HOG) [14] and Harris corner 

detection [15], and the incorporation of a Bayesian-

optimized k-nearest neighbors classifier (BO-kNN) 

[16]. These contributions aim to address the 

challenges inherent in image segmentation and 

classification, providing advanced and efficient 

resolutions for diverse image analysis tasks. 

 

The structure of the paper is organized to 

comprehensively address the objectives. Section 2 

begins with a literature review, highlighting 

challenges in existing methods and showcasing the 

need for advanced crack detection models. Section 3 

details the materials and methods employed in the 

research, providing insights into the image feature 

extraction techniques and machine learning 

algorithms used. It also explores into the intricacies 

of the proposed methods, elucidating the FOA, 

hybrid feature extraction, and BO-kNN classifier. 

Following this, section 4 presents result from 

extensive experimentation, drawing comparisons 

with cutting-edge techniques to showcase the 

efficacy and supremacy of the proposed approach. 

Finally, section 5 concludes the paper by 

summarizing findings and presenting concluding 

remarks, emphasizing the practical implementation 

potential across image processing, computer vision, 

and pattern recognition domains. 

 

2.Literature review 
In the realm of pavement crack detection, pixel 

segmentation stands out as a prevalent algorithm, 

involving the extraction of crack pixel features to 

isolate crack regions from the road surface 

background. Notably, the grayscale threshold 

segmentation method, a widely used approach, 

detects low grayscale values within pavement cracks, 

allowing for the categorization of image pixels into 

background and crack regions. This method gains 

popularity for its simplicity, quick calculations, and 

widespread application in automatic crack detection 

systems. 

 

In a comparative study presented by Kheradmandi 

and Mehranfar (2022) [5], four threshold 

segmentation methods, including the regression 

method, Otsu threshold, Kittler threshold, and 

relaxation factor method, were assessed. The 

grayscale threshold segmentation's advantages lie in 

its simplicity and computational efficiency, but the 

manual threshold selection poses challenges in varied 

environments. 

 

Exploring alternative techniques, Cheng et al. (1999) 

[17] introduced fuzzy set theory to segment pavement 

crack targets, constructing a difference image and 

employing fuzzy segmentation theory for threshold 

segmentation. While this method presents advantages 

in dealing with uncertainties, its reliance on 

subjective parameters and computational complexity 

can be limiting. 

 

Moving towards advanced approaches, Chen et al. 

(2022) [18] proposed a crack classification method 

combining texture features and SVM classification, 

demonstrating high accuracy in distinguishing cracks. 

However, the limitations may arise in handling 

diverse crack patterns and textures in real-world 

scenarios. 

 

Deep learning methodologies were explored by Islam 

et al. (2022) [19], leveraging a pre-trained 

convolutional neural networks (CNN) model fine-

tuned with a crack dataset for promising outcomes in 

classifying various crack types. The hybrid approach 

by Hoang and Nguyen (2023) [20], fusing gray level 

co-occurrence matrix (GLCM) features with deep 

learning, exhibited enhanced accuracy. Nevertheless, 

challenges in training data availability and 
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computational resources may hinder widespread 

application. 

 

Li et al. (2021) [21] developed a crack classification 

system using the U-Net architecture and transfer 

learning, achieving precise classification. Despite its 

accuracy, challenges may arise in training large-scale 

datasets and generalizing to diverse environmental 

conditions. 

 

Enhancing discriminative ability, Fan et al. (2022) 

[22] proposed a crack classification method based on 

an enhanced ResNet with an attention mechanism, 

resulting in high accuracy in classifying road cracks. 

However, the computational complexity and resource 

requirements may limit real-time applications. 

 

Yu et al. (2022) [23] combined transfer learning with 

ensemble learning techniques, demonstrating 

enhanced accuracy in crack classification. The 

advantage of ensemble methods is evident, but 

potential challenges in model interpretability and 

increased computational requirements should be 

considered. 

 

Elhariri et al. (2020) [24] integrated a hybrid feature 

selection approach with SVM classification for 

accurate differentiation of crack types. While 

achieving precise results, challenges may arise in 

identifying the most pertinent features for effective 

crack classification. 

 

The method proposed by Matarneh et al. (2023) [25] 

involves leveraging the Hough transform algorithm 

for automated pavement crack detection and 

classification, emphasizing its significance in 

preventative road maintenance. Results demonstrate 

practical implications, showcasing impressive 

accuracy rates: 92.14% for vertical cracks, 93.03% 

for diagonal cracks, and 95.61% for horizontal 

cracks. The advantages lie in the efficiency of this 

low-cost approach, with rapid processing times 

ranging from 0.79 to 0.98 seconds per image. 

However, limitations might include potential 

challenges in handling diverse pavement conditions 

or crack variations, warranting further investigation. 

Ashraf et al. (2023) [26] employ a custom you only 

look once (YOLOv7) model for efficient pavement 

crack detection, addressing safety concerns and time 

constraints. Using gaps and a custom dataset, it 

achieves impressive accuracy (92% and 88%). 

Precision and recall values surpass benchmarks, 

outperforming recent studies. Potential limitations 

may include sensitivity to diverse pavement 

conditions in real-world applications. 

 

Guo et al. (2023) [27] introduced the crack 

transformer (CT), a novel model unifying Swin 

transformer as the encoder and decoder with 

multilayer perceptron (MLP) layers for accurate 

pavement crack detection. The results demonstrate 

enhanced performance and effectiveness of the 

Transformer-based network in detecting long and 

complicated cracks, even under noisy conditions. The 

advantages include improved detection accuracy and 

robustness. However, potential limitations may arise 

in handling diverse pavement conditions, warranting 

further exploration for real-world applicability. 

 

Tello-cifuentes et al. (2023) [28] presented a 

methodology for pavement crack detection and 

classification, utilizing image analysis, wavelet 

scattering transform, fractal dimension, and machine 

learning algorithms. Results indicate high accuracy 

using ANN and SVM for identifying common 

damages: potholes, longitudinal, and alligator cracks. 

The method offers quantitative pavement condition 

assessment, providing an efficient approach for 

maintenance. However, potential limitations may 

include challenges in handling variations in pavement 

conditions or damage types, necessitating further 

investigation for broader applicability. 

 

Tran et al. (2022) [29] proposed a two-step 

automated crack detection and severity classification 

process for asphalt pavements. Using mask region 

based convolutional neural networks (RCNN) for 

detection and image processing for severity 

determination, the method achieves a promising 

92.10% accuracy in crack detection and 87.5% 

accuracy in severity classification. This offers an 

efficient alternative to manual inspection, addressing 

time and cost constraints. However, potential 

limitations may arise in handling diverse pavement 

conditions, warranting further investigation for 

broader application. 

 

Hammouch et al. (2022) [30] introduced an 

automated method utilizing CNN for crack detection 

and classification in Moroccan pavements, 

addressing the limitations of manual processing. By 

applying transfer learning with a pre-trained visual 

geometry group-19 (VGG-19) model, the proposed 

methodology demonstrates effective crack detection, 

ensuring accurate pavement evaluation. The 

advantages include the automation of a previously 

labor-intensive process, enhancing efficiency. 
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However, a potential limitation of CNN is its 

sensitivity to diverse pavement conditions or crack 

variations, warranting further investigation for 

broader applicability. 

 

Ahmadi et al. (2022) [31] proposed an integrated 

machine learning model for road crack detection, 

employing heuristic algorithms and the Hough 

transform technique. Utilizing six classification 

models, including a hybrid model, the method 

achieves a notable 93.86% overall accuracy, 

addressing common road deterioration. The approach 

automates inspection, reducing costs and errors 

associated with manual methods, although potential 

limitations include model complexity and tuning 

requirements. 

 

Hoang et al. (2022) [32] introduced a novel method 

for accurate crack and sealed crack detection in 

asphalt pavement. Combining image processing and 

salp swarm algorithm optimized machine learning, it 

achieves high accuracy: 91.33% for cracks and 

92.83% for sealed cracks. This innovative approach 

efficiently addresses challenges of false positives in 

distinguishing line-based defects. However, potential 

limitations include computational complexity and 

sensitivity to pavement variations. 

 

Jana et al. (2022) [33] presented a transfer learning-

based deep CNN model for efficient pavement crack 

detection. Leveraging image processing, machine 

learning, and deep learning techniques, the proposed 

model, particularly Google Net, exhibits superior 

performance. Advantages include enhanced accuracy 

in detecting pavement cracks, addressing the 

challenges of manual inspection. However, potential 

limitations may arise in complex pavement 

conditions or variations, warranting further 

investigation. 

 

Liu and Xu (2022) [34] introduced a method for night 

pavement crack detection by normalizing images 

through image-to-image translation. The approach 

involves feature point detection, paired image 

acquisition, and training an image translation model. 

Results demonstrate enhanced detection performance 

for night images converted to day, utilizing a CNN 

based on visual geometry group network (VGGNet). 

Advantages include improved model effectiveness 

during nighttime conditions. However, potential 

limitations may arise in scenarios with extreme 

variations, requiring further exploration. 

 

Ali et al. (2022) [35] reviewed the application of 

CNN in structural crack detection, emphasizing 

advancements in hardware, data collection, and 

algorithms. It discusses CNN's role in image pre-

processing, network architectures, and performance 

metrics. The advantages lie in CNN's transformative 

impact on crack detection, offering improved 

accuracy and efficiency. However, limitations in 

manual processes, image processing, and machine 

learning methods are acknowledged, urging further 

exploration for overcoming challenges in future 

research. 

 

The investigation of diverse methods for crack 

detection and identification in intricate pavements 

remains an active field of research. Various 

algorithms have been employed, each with its 

drawbacks.  

 

Grayscale threshold segmentation [5]: 

Drawbacks: 

 Sensitivity to threshold selection: The widely 

used grayscale threshold segmentation method is 

sensitive to the selection of thresholds, impacting 

its adaptability across diverse pavement conditions 

[5]. 

 Limited discrimination: The categorization of 

image pixels into background and crack regions 

based on grayscale values may result in limited 

discriminative power, especially in the presence of 

noise or variations in lighting conditions. 

 

Fuzzy set theory and threshold segmentation [17, 

18]: 

Drawbacks: 

 Complex parameter tuning: The application of 

fuzzy set theory to segment and identify pavement 

crack targets involves complex parameter tuning, 

making it challenging to achieve optimal results 

consistently [17]. 

 Sensitivity to texture features: Methods utilizing 

texture features, when combined with SVM 

classification, may struggle with sensitivity to 

variations in crack textures, limiting their 

robustness [18]. 

Deep learning-based classification [19, 20] 

Drawbacks: 

 Challenges in training data availability: Deep 

learning methodologies, including the use of pre-

trained CNN models, face challenges related to the 

availability of large annotated datasets for 

effective training, limiting their applicability in 

scenarios with scarce labelled data [19]. 
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 Computational resource challenges: The hybrid 

approach of fusing GLCM features with deep 

learning may exhibit enhanced accuracy, but 

challenges related to training data availability and 

computational resources may hinder widespread 

application [20]. 

U-net architecture and transfer learning [21]: 

Drawbacks: 

 Challenges in training large-scale datasets: 

Despite achieving precise classification, challenges 

may arise in training large-scale datasets and 

generalizing to diverse environmental conditions 

[21]. 

Enhanced ResNet with attention mechanism [22]: 

Drawbacks: 

 Computational complexity and resource 

requirements: While achieving high accuracy, the 

method's computational complexity and resource 

requirements may limit its suitability for real-time 

applications [22]. 

Transfer learning with ensemble learning 

techniques [23]: 

Drawbacks: 

 Model interpretability and computational 

requirements: The advantage of enhanced 

accuracy through ensemble methods is evident, but 

potential challenges in model interpretability and 

increased computational requirements should be 

considered [23]. 

Drawbacks: 

Hybrid feature selection approach with SVM 

Classification [24]: 

 Identifying pertinent features: While achieving 

precise results, challenges may arise in identifying 

the most pertinent features for effective crack 

classification, particularly when integrating 

GLCM features with SVM classification [24]. 

Hough transform algorithm [25]: 

Drawbacks: 

 Handling diverse pavement conditions or crack 

variations: While the Hough transform algorithm 

demonstrates efficiency and impressive accuracy 

rates, potential challenges may exist in handling 

diverse pavement conditions or crack variations, 

necessitating further investigation [25]. 

Custom YOLOv7 Model [26] 

Drawbacks: 

 Sensitivity to diverse pavement conditions: 

Despite addressing safety concerns and time 

constraints with impressive accuracy, potential 

limitations may include sensitivity to diverse 

pavement conditions in real-world applications 

[26]. 

 

Crack transformer (CT) model [27]: 

Drawbacks: 

 Handling diverse pavement conditions: While 

the CT model demonstrates enhanced 

performance, potential limitations may arise in 

handling diverse pavement conditions, warranting 

further exploration for real-world applicability 

[27]. 

Methodology with image analysis, wavelet 

scattering transform, fractal dimension, and 

machine learning algorithms [28]: 

Drawbacks: 

 Handling variations in pavement conditions or 

damage types: Despite high accuracy in pavement 

condition assessment, potential limitations may 

include challenges in handling variations in 

pavement conditions or damage types, 

necessitating further investigation for broader 

applicability [28]. 

Two-step automated crack detection and severity 

classification process [29]: 

Drawbacks: 

 Handling diverse pavement conditions: Despite 

offering an efficient alternative to manual 

inspection, potential limitations may arise in 

handling diverse pavement conditions, warranting 

further investigation for broader application [29]. 

Automated method utilizing CNN [30]: 

Drawbacks: 

 Sensitivity to diverse pavement conditions or 

crack variations: While addressing the limitations 

of manual processing, potential sensitivity to 

diverse pavement conditions or crack variations 

may require further investigation for broader 

applicability [30]. 

Integrated machine learning model [31]: 

Drawbacks: 

 Model complexity and tuning requirements: 

The integrated machine learning model achieves 

notable overall accuracy, but potential limitations 

may include model complexity and tuning 

requirements [31]. 

Novel method with salp swarm algorithm 

optimized machine learning [32]: 

Drawbacks: 

 Computational complexity and sensitivity to 

pavement variations: Despite achieving high 

accuracy, potential limitations include 

computational complexity and sensitivity to 

variations in pavement conditions [32]. 

Transfer learning-based deep CNN model [33]: 

Drawbacks: 

 Complex pavement conditions or variations: 

While exhibiting superior performance, potential 
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limitations may arise in complex pavement 

conditions or variations, warranting further 

investigation [33]. 

Night pavement crack detection method [34]: 

Drawbacks: 

 Extreme variations: Despite improved detection 

performance during nighttime conditions, potential 

limitations may arise in scenarios with extreme 

variations, requiring further exploration [34]. 

Application of CNN in structural crack detection 

[35]: 

Drawbacks: 

 Overcoming limitations in manual processes 

and image processing: While acknowledging 

limitations in manual processes, image processing, 

and machine learning methods, further exploration 

is urged to overcome challenges in future research 

[35]. 

 

The selection of the FOA for Otsu thresholding, 

hybrid Harris corner and HOG feature extraction, and 

BO-kNN classification in this research paper is 

justified by the distinctive challenges encountered in 

road crack detection. The inherent complexities in 

road surfaces, including diverse elements like 

patches, markings, shadows, and debris, create 

variations that pose significant obstacles for existing 

detection algorithms. These challenges often result in 

potential erroneous identifications. The proposed 

techniques are strategically chosen to overcome the 

drawbacks associated with conventional methods. 

The FOA for Otsu thresholding is introduced to 

enhance the accuracy of threshold segmentation, 

addressing the sensitivity to threshold selection 

observed in widely used methods. The hybrid 

approach incorporating Harris corner and HOG 

feature extraction aims to improve the discriminative 

power of the algorithm, especially in the presence of 

diverse crack patterns and textures. Additionally, the 

BO-kNN classification is introduced to enhance 

efficiency in real-world road infrastructure 

conditions. Together, these innovations are designed 

to collectively address the specific challenges posed 

by road surface complexities, ultimately improving 

the overall performance of the crack detection 

system. 

 

3.Material and methods 
3.1Otsu's thresholding 

Otsu's thresholding was employed for image 

segmentation, as it automatically calculated an ideal 

threshold value to distinguish foreground and 

background pixels within an image. The underlying 

objective of Otsu's thresholding [13] was to 

determine the threshold value that maximized the 

between-class variance of the image. This threshold 

value effectively separated the image into two 

classes: the foreground (object of interest) and the 

background. The mathematical formulation of Otsu's 

thresholding involved computing the histogram of the 

grayscale image, representing the distribution of pixel 

intensities. Let      denote the histogram value at 

intensity level   (ranging from   to    , where   is 

the number of intensity levels). The total count of 

pixels in the image was denoted as  . The first step 

was to calculate the probabilities of occurrence for 

each intensity level (Equation 1 to 6): 

     
    

 
    (1) 

Next, we computed the cumulative sums of 

probabilities up to intensity level  : 
     ∑      

     (2) 

Where   represents the intensity level of a pixel in 

the grayscale image. 

Similarly, we computed the cumulative means up to 

intensity level  : 
     ∑        

    (3) 

The total mean value of the image was given by: 

 

   ∑          
    (4) 

 

Now, we can calculate the between-class variance for 

each possible threshold value  : 

  
     

[           ] 

[    (        )]
   (5) 

Where      represented the cumulative sum of 

probabilities up to the intensity level  , and   was a 

measure of the separation between the foreground 

and background classes based on the chosen 

threshold value. 

 

Finally, the optimal threshold value was ascertained 

by maximizing the variance between classes: 

           
       (6) 

 

The resulting threshold value    is used to separate 

the image into foreground and background based on 

pixel intensities. By applying Otsu's thresholding, we 

effectively segmented an image by automatically 

finding the optimal threshold value, leading to 

accurate separation of foreground and background 

regions. 

 

3.2Histogram of oriented gradients (HOG) 

It is a feature extraction technique used for image 

segmentation. It captured the local gradient 

information in an image to represent its visual 
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content, making it particularly effective in describing 

object shape and texture. 

The process of extracting HOG features [14] for 

image segmentation involved the following steps: 

1. Image preprocessing: In general, the input image 

underwent preprocessing to enhance its quality and 

eliminate any noise present. This preprocessing 

step often involved converting the image to 

grayscale and implementing normalization 

techniques to enhance contrast and mitigate 

variations in lighting. 

2. Gradient computation: Gradients were calculated 

to capture the intensity changes or edges in the 

image. This was done by applying gradient 

operators such as the Sobel operator in both the 

horizontal      and vertical (  ) directions. The 

magnitude     and direction     of the gradient at 

each pixel were computed using the following 

Equations 7 and 8: 

 

  √(  
    

 )   (7)  

         (     )   (8)  

  

The       function took the ratio of the vertical 

gradient(  ) to the horizontal gradient      as 

arguments and returned the corresponding angle. The 

resulting gradient orientation ranged from    to   or 

  to   , depending on the conventions used. 

 

3. Cell division: The image was partitioned into 

compact cells, typically measuring 8×8 or 16×16 

pixels in size. Each individual cell corresponded to 

a localized region within the image. 

4. Orientation binning: In each cell, the orientations 

of gradients     were discretely categorized into a 

finite number of bins that encompassed the 

complete spectrum of possible angles (e.g., 0-180 

degrees or 0-360 degrees). The magnitude of the 

gradient was assigned to the corresponding bin 

based on its orientation. This process created a 

histogram of orientations for each cell. 

5. Block normalization: To capture local spatial 

information and provide robustness to lighting 

variations, neighboring cells were grouped into 

larger blocks. The block size and overlap were 

typically defined as parameters. Within each 

block, the histograms of neighboring cells were 

concatenated, and normalization techniques such 

as L1-norm or L2-norm were applied to the 

concatenated histograms. 

6. Descriptor extraction: The normalized block-

level features were concatenated to form the final 

HOG descriptor, representing the global structure 

and texture information of the image. This 

descriptor could serve as input for diverse machine 

learning algorithms to execute image segmentation 

or other computer vision tasks. 

 

By utilizing HOG features, image segmentation 

algorithms could leverage the information captured in 

local gradients to identify object boundaries and 

regions of interest within the image. 

 

3.3Harris corner detector 

It is a popular feature extraction algorithm used for 

image segmentation. It aimed to identify significant 

corner points in an image by analyzing local intensity 

variations. Corner points were crucial for image 

segmentation as they often represented key structures 

and distinctive features. 

 

The mathematical formulation of the Harris corner 

detector [15] involved the following steps: 

1. Image gradient calculation: The first step was to 

calculate the gradients of the image. This could be 

done using gradient operators such as the Sobel 

operator to determine the intensity variations in 

both the horizontal      and vertical (  ) 

directions. 

2. Structure tensor computation: The structure 

tensor was constructed using the gradients of the 

image. The structure tensor at each pixel       
was defined as Equation 9: 

  [
 ∑   

  ∑(    )

∑(    )  ∑(  
 )

]   (9) 

 

Here, ∑ represented summation over a local 

neighborhood centered at      . 

 

3. Corner response calculation: The corner 

response function   was computed based on the 

eigenvalues of the structure tensor. The function 

that determined the response of corners was 

expressed as Equation 10: 

                      (10) 

 

Where,        represented the determinant of the 

structure tensor and          represented its trace.   

was a constant typically set to a small value (e.g., 

0.04 - 0.06) to balance the influence of the two terms. 

4. Non-maximum suppression: The corner response 

function   was used to identify corners in the 

image. Non-maximum suppression was applied to 

select the local maxima in  , indicating the most 
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significant corners. This step helped in reducing 

multiple detections around a single corner point. 

5. Thresholding: A threshold was applied to the 

corner response function   to discard weak corner 

candidates and retain only the strongest corners. 

This helped to eliminate noise and irrelevant 

features. 

6. Feature extraction: The resulting corner points 

obtained from the Harris corner detector served as 

feature points for image segmentation. These 

corners could be used to represent distinctive 

structures, objects, or boundaries in an image. 

 

The Harris corner detector extracted corner features 

by analyzing the local intensity variations in different 

directions. These corner points could serve as 

distinctive features for image segmentation and other 

computer vision tasks, providing information about 

object boundaries and points of interest in the image. 

 

3.4Bayesian-optimized k-nearest neighbour (BO-

kNN) classifier 

BO-kNN classifier [16] is a variant of the traditional 

k-nearest neighbors (kNN) algorithm that 

incorporated Bayesian optimization techniques to 

improve its performance. kNN is a classification 

algorithm that operates on non-parametric principles. 

It assigned a given data point to a class by identifying 

the K closest neighbors using a distance metric and 

determining the class label based on the majority vote 

of these neighbors. 

 

The Bayesian optimization component [36] of this 

classifier was responsible for tuning the 

hyperparameters of the kNN algorithm to maximize 

its performance. It used a probabilistic model to 

model the unknown function that related the 

hyperparameters to the performance metric (e.g., 

accuracy). By iteratively evaluating different 

hyperparameter configurations, it learned from the 

previous evaluations and updated its belief about the 

optimal configuration. This process guided the search 

towards promising hyperparameter regions, 

ultimately leading to better performance. 

 

The mathematical equations involved in the BO-kNN 

classifier could be summarized as follows: 

1. Distance metric: 

 When computing the distance between two data 

points,   and  , it was customary to employ a 

distance metric such as Euclidean distance, 

Manhattan distance, or Minkowski distance. 

 Euclidean distance:        √∑        
  

2. kNN classification: 

 When presented with a new data point,      , the 

kNN classifier allocated it to the class label that 

prevailed among its K nearest neighbors. 

 The majority voting can be represented as follows: 

             ∑    for   in neighbors) 

3. Bayesian optimization: 

 The goal was to find the optimal hyperparameters 

for the kNN classifier that maximized a chosen 

performance metric, such as accuracy. 

 The probabilistic model (e.g., Gaussian process) 

learned from previous evaluations to estimate the 

performance of different hyperparameter 

configurations. 

 The acquisition function (e.g., expected 

improvement) guided the search by balancing 

exploration (sampling new configurations) and 

exploitation (evaluating configurations likely to 

have better performance). 

4. Hyperparameters: 

   denoted the count of nearest neighbors to be 

considered during the classification process. 

 Distance metric: The metric used to calculate the 

distance between data points. 

 Other parameters specific to the kNN algorithm 

(e.g., weighting scheme for neighbors). 

By combining the power of the kNN algorithm and 

Bayesian optimization, the BO-kNN classifier 

effectively adapted to different datasets and 

maximized its performance by tuning the 

hyperparameters. 

 

3.5Proposed methodology  

The proposed method in Figure 1, described in the 

paper, aims to enhance image segmentation and 

classification for crack detection by combining 

several techniques. Figure 2 shows the flow diagram 

for the proposed approach. 

Here's a breakdown of the different components of 

the method: 

FOA for Otsu thresholding: The FOA was utilized 

to optimize the Otsu thresholding method. Otsu 

thresholding was a widely used technique for image 

segmentation, where an optimal threshold was 

selected to separate objects from the background 

based on the image histogram. The FOA helped 

improve the effectiveness of Otsu thresholding by 

optimizing the threshold selection process. FOA was 

chosen for the specific task of optimizing Otsu's 

thresholding in the context of road crack detection for 

the following reasons: 
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Figure 1 Block diagram for proposed method for road crack classification 

 

Input Road Crack Image

Otsu's Thresholding

  -Calculate Histogram

  -Initialize Population

  -Evaluate Fitness

  -FOA Main Loop

  -Update Best Threshold

  -Check Convergence

Hybrid Feature Extraction

  -Harris Corner Detection

  -HOG Feature Extraction

  -Concatenate Features

  -Normalization

Bayesian-Optimized KNN 

Classification

 Bayesian Optimization for KNN 

Hyperparameters

 Train KNN Classifier

 Classify Road Crack Images

 Main (Loading dataset, Feature 

Extraction, Classification, 

Evaluation)

Predicted Labels 
 

Figure 2 Flow diagram for proposed approach for 

road crack classification 

 Global search capability: FOA's population-

based approach allowed for a global search across 

the solution space. Road crack images could vary 

significantly in terms of lighting conditions, 

surface textures, and crack patterns. FOA's ability 

to explore a diverse range of threshold values was 

crucial for adapting to these variations and finding 

optimal solutions that worked well across different 

scenarios. 

 Dynamic adaptation: The algorithm's 

mechanisms, inspired by the interactions in natural 

ecosystems, enabled dynamic adaptation to 

changing conditions. In road crack detection, 

images might have exhibited varying levels of 

noise, different crack types, and diverse 

backgrounds. FOA's adaptability helped in 

responding to these dynamic characteristics, 

leading to improved robustness in thresholding. 

 Exploration and exploitation: FOA balanced 

exploration (searching for new and diverse 

solutions) and exploitation (refining promising 

solutions). This was essential for fine-tuning the 

thresholding process. Images with road cracks 

might have had different levels of contrast and 

lighting conditions, and FOA's ability to explore a 

wide range of thresholds while refining the best 

solutions contributed to effective image 

segmentation. 

 Multi-modal optimization: Road crack detection 

involved handling diverse images with various 

crack patterns and characteristics. FOA's capacity 

for multi-modal optimization made it suitable for 

scenarios where there might be multiple optimal 

threshold values. This flexibility was crucial for 

adapting to the complexity of road crack images. 

 Population dynamics: FOA leveraged the 

concept of population dynamics, where a 

population of candidate solutions evolved over 

iterations. This approach was advantageous for 

addressing the challenges posed by road crack 

images, as different regions of an image might 
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have required different threshold values. The 

population-based nature of FOA allowed it to 

explore and exploit various threshold values 

simultaneously. 

 Nature-inspired parallelism: The parallel nature 

of FOA, inspired by the collaboration in natural 

ecosystems, enabled the algorithm to explore 

multiple threshold values concurrently. This 

parallelism was advantageous in the context of 

image thresholding, where efficiency in exploring 

potential solutions was crucial. 

 

These characteristics made FOA well-suited for the 

challenging task of optimizing Otsu's thresholding for 

road crack detection, where image variations and 

complexities required a robust and adaptive 

optimization approach. 

 

Hybrid feature extraction approach: The method 

employed a hybrid feature extraction approach that 

combined two techniques: Texture HOG and Harris 

corner detection. HOG was a feature descriptor that 

captured texture and shape information from an 

image by computing gradients in different 

orientations. It was effective in capturing local 

patterns and edge information. Harris corner 

detection, on the other hand, identified key points or 

corners in an image that could be used as distinctive 

features for classification. By combining these two 

techniques, the proposed method aimed to extract 

comprehensive and discriminative features for crack 

detection. 

Bayesian-optimized k nearest neighbors (BO-

kNN) classifier: The extracted features were then 

utilized in conjunction with a BO-kNN classifier. 

kNN represented a straightforward and intuitive 

classification algorithm that assigned a class label to 

an input sample by considering the majority vote of 

its nearest neighbors. To enhance its performance and 

generalization capability, the Bayesian optimization 

technique was utilized to optimize various parameters 

of the kNN classifier, including the number of 

neighbors     and distance metrics. 

 

In order to amplify the accuracy and efficiency of 

crack detection in road images, the proposed method 

combined optimized Otsu thresholding, a hybrid 

feature extraction approach, and a BO-kNN 

classifier. The utilization of FOA contributed to 

refining the thresholding process, while the hybrid 

feature extraction approach and Bayesian 

optimization were instrumental in optimizing the 

feature representation and classification stages, 

respectively. The overall goal was to achieve more 

accurate and reliable crack detection results 

compared to existing methods. 

 

3.6Image preprocessing and segmentation 

To apply the FOA for Otsu thresholding, there was 

the fitness function that quantified the quality of a 

threshold value based on the between-class variance. 

The fitness function for Otsu thresholding could be 

defined as follows: 

1. Assuming a grayscale image with pixel values 

ranging from 0 to 255, the goal was to find an 

optimal threshold value, denoted by  , that 

separated the foreground and background pixels. 

2. Computed the histogram of the image, 

representing the frequency of each grayscale 

intensity value. 

3. Computed the overall count of pixels in the image, 

represented as  . 

4. For each possible threshold value   from 0 to 255, 

calculated the following: 

 Computed the probabilities of the foreground and 

background classes based on the threshold value  . 

The probability of the foreground class was 

denoted by      , and the probability of the 

background class was denoted by      . These 

probabilities were calculated by summing the 

histogram values up to   and from   to 255, 

respectively. 

 Computed the mean grayscale intensity values of 

the foreground and background classes. The mean 

intensity of the foreground class was denoted by 

     , and the mean intensity of the background 

class was denoted by      . These mean values 

were calculated by averaging the grayscale 

intensity values weighted by their corresponding 

probabilities. 

 Computed the between-class variance, denoted by 

  
    , using Equation 11: 

  
                 (           )

 
 (11) 

5. Chose the threshold value T that maximized the 

variance between classes, ensuring optimal 

separation between the background and 

foreground classes. 

6. The fitness function for FOA in this case was 

simply the between-class variance,   
    . The 

FOA algorithm aimed to maximize this fitness 

value by iteratively updating and improving the 

candidate threshold values. 

 

By applying the FOA with this fitness function, the 

algorithm explored the search space of threshold 

values and converged towards an optimal solution 

that maximized the between-class variance, 
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effectively separating the foreground and background 

pixels in the image. 

 

Figure 3 shows the flow diagram for FOA for Otsu's 

thresholding: 

Initialization

    -Population size: 50

    -Generate initial population

Evaluate Fitness

 -Apply Otsu's thresholding

 -Calculate fitness for each threshold

FOA Main Loop

    -Max iterations: 100

    -Convergence criteria: 0.001

    -Loop for 100 iterations

 Select subset

 Reproduction

 Migration

 Competition

 Symbiosis

Update Best

 -Track best threshold and fitness

Check Convergence

  -If best fitness > threshold, exit

Return Best 

  -Return best threshold found

 
Figure 3 Flow diagram for FOA optimization of 

Otsu's thresholding  

 

The following Algorithm-1 aimed to optimize the 

Otsu thresholding method using a forest optimization 

approach, iterating through a series of steps to find an 

optimal threshold value for image segmentation. The 

loop continued until a convergence criterion was met 

or the maximum number of iterations was reached. 

The final result is shown in Figure 4, which has the 

best threshold value obtained during the optimization 

process. 

 

Algorithm-1: 

1. Initialize population: 
o Function: initialize_population(population_size) 

o Description: This function generates an initial 

population of threshold values. 

o Implementation Details: Threshold values can be 

randomly generated within a specified range or can 

be initialized based on prior knowledge. 

2. Evaluate Fitness: 
o Function: evaluate_fitness(population, 

input_image) 

o Description: Evaluates the fitness of each 

threshold in the population using the Otsu 

thresholding method on the input image. 

o Implementation Details: Applies the Otsu 

thresholding method to the input image using each 

threshold value in the population and computes a 

fitness score based on the quality of segmentation. 

3. FOA Main Loop: 
o Function: foa_main_loop(population, 

max_iterations, convergence_criteria) 

o Description: The main loop of the FOA, where 

evolution occurs. 

o Implementation Details: 
 Enters a loop for a maximum specified number of 

iterations (max_iterations). 

 Selects a subset of the population based on their 

fitness scores. 

 Generates a new population through reproduction, 

possibly involving crossover and mutation 

operators. 

 Allows migration between populations in the new 

population. 

 Conducts a competition among populations to 

determine survival. 

 Allows symbiosis within the competition 

population. 

 Continues iterations until the convergence criteria 

are met or the maximum number of iterations is 

reached. 

4. Update best threshold: 
o Function:update_best_threshold(population, 

current_best_threshold, current_best_fitness) 

o Description: Tracks the best threshold and its 

fitness value during the iterations. 

o Implementation details: Compares the fitness of 

the thresholds in the current population with the 

current best fitness and updates the best threshold 

if a better one is found. 

5. Check convergence: 

o Function: 
check_convergence(current_best_fitness, 

convergence_criteria) 

o Description: Checks whether the optimization has 

converged based on a specified convergence 

criteria. 

o Implementation details: If the best fitness value 

is above a certain threshold (e.g., 1 - 

convergence_criteria), exit the loop. 
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6. Return Best Threshold: 
o Function: return_best_threshold() 

o Description: Returns the threshold value that 

provided the best fitness. 

o Implementation Details: Simply returns the 

threshold value that yielded the best fitness during 

the optimization process. 

 

         
                          (a) Original image                                                  (b) Contrast stretched image 

        
                 (c) RGB to gray (contrast stretched)                               (d) Segmented cracks 

 
(e) Cleaned image 

Figure 4 Image processing and segmentation 
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3.7Feature extraction 

The proposed method aimed to improve road crack 

classification by combining HOG and Harris corner 

detection as feature extraction techniques. Here's a 

breakdown of the approach: 

HOG: It is a popular feature descriptor that captures 

local texture and shape information from an image. It 

worked by computing the gradients of image patches 

in different orientations and creating histograms 

based on the gradient orientations. In the context of 

road crack classification, HOG could capture 

important texture patterns and edge information 

specific to cracks. By extracting HOG features from 

crack images, the method aimed to represent the 

cracks with discriminative texture descriptors. 

Harris corner detection: This approach was 

extensively employed to detect corners or keypoints 

within an image. Corners were localized points where 

there was a significant change in the intensity or 

texture of the image. In the context of road crack 

classification, Harris corner detection could help 

identify important crack-specific keypoints. As 

expressed in Figure 5, the method aimed to capture 

distinctive features related to crack shapes and edges 

by detecting corners specifically in the crack region. 

By combining HOG and Harris corner detection, the 

proposed method aimed to extract complementary 

features that captured both texture and shape 

information relevant to road cracks. These features 

could then be used as inputs to a classification 

algorithm to differentiate between crack and non-

crack regions. 

 

 
Figure 5 Harris corner detection features 

 

The following Algorithm-2 outlined the process of 

extracting hybrid features by combining information 

from Harris corner detection and HOG feature 

extraction. The resulting feature vector was then 

normalized for further processing or analysis. 

 

Algorithm-2: 

1. Harris corner detection: 
o Function: harris_corner_detection(input_image) 

o Description: Identifies corner points in the input 

image using Harris Corner Detection. 

o Implementation Details: Applies Harris Corner 

Detection to the input image to detect key corner 

points based on intensity changes. 

2. HOG feature extraction: 
o Function: hog_feature_extraction(input_image) 

o Description: Calculates Histogram of Oriented 

Gradients (HOG) features from the input image. 

o Implementation Details: Computes the HOG 

features by dividing the image into cells, 

computing gradients, and creating histograms of 

gradient orientations. 

3. Concatenation: 
o Function: concatenate_features(harris_corners, 

hog_features) 

o Description: Concatenates the Harris corner 

points with the HOG features. 

o Implementation details: Combines the identified 

Harris corner points with the calculated HOG 

features to create a hybrid feature vector. 

4. Normalization: 

o Function: 
normalize_feature_vector(feature_vector) 

o Description: Normalizes the hybrid feature vector. 

o Implementation details: Scales the feature vector 

to have a mean of 0 and a standard deviation of 1 

to ensure uniformity in scale. 

5. Return: 

o Function: 
return_normalized_feature_vector(normalized_fea

ture_vector) 

o Description: Returns the normalized hybrid 

feature vector. 

o Implementation Details: Simply returns the 

normalized feature vector for further processing or 

analysis. 

 

3.8Classifier 

In the proposed method, the extracted features from 

the hybrid approach, combining texture features; 

HOG and Harris corner detection, were utilized as 

inputs to a BO-kNN classifier for the actual 

classification task. kNN stood as a straightforward 

yet impactful classification algorithm, whereby it 

assigned class labels to samples based on the 

majority consensus of their nearest neighbors within 

the feature space. Within the realm of road crack 
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classification, the extracted features acted as the input 

vectors, and the kNN algorithm determined the class 

label of a given crack image by analyzing the labels 

of its closest neighbors. 

 

To optimize the performance of the kNN classifier, 

the utilization of a Bayesian optimization technique 

was warranted. Bayesian optimization represented a 

method that intelligently navigated the 

hyperparameter space of a machine learning model, 

aiming to discover the most advantageous 

combination of hyperparameters that maximized the 

performance metric, such as accuracy or F-Score. By 

integrating Bayesian optimization into the kNN 

classifier, the objective of this approach was to 

identify the optimal parameters for road crack 

classification, including factors like the number of 

neighbors     and distance metrics. This 

amalgamation of techniques aspired to elevate the 

accuracy and efficacy of road crack classification. 

 

The following Algorithm-3 outlined the process of 

BO-kNN classification for road crack images, 

including the main steps of loading the dataset, 

feature extraction, classification, and performance 

evaluation. 

 

Algorithm-3: 

1. Bayesian Optimization for kNN 

Hyperparameters: 

o Function: 
bayesian_optimization(train_features, 

train_labels) 

o Description: Performs Bayesian Optimization 

on the training features and labels to find the 

best hyperparameters for kNN. 

o Implementation Details: Uses Bayesian 

Optimization techniques to search for the 

optimal hyperparameters for the kNN classifier 

based on the performance on the training 

dataset. 

2. Train KNN Classifier: 

o Function: 
train_knn_classifier(optimal_hyperparameters, 

train_features, train_labels) 

o Description: Trains the kNN classifier using 

the optimized hyperparameters, along with the 

training features and labels. 

o Implementation Details: Utilizes the kNN 

algorithm with the hyperparameters obtained 

from Bayesian Optimization to train the 

classifier. 

3. Classify Road Crack Images: 

o Function: 
classify_road_crack_images(trained_knn_classi

fier, test_features) 

o Description: Uses the trained kNN classifier to 

predict labels for road crack images in the test 

set. 

o Implementation Details: Applies the trained 

kNN classifier to the test features to predict the 

labels for road crack images. 

4. Main: 
o Function: main() 

o Description: The main function that 

orchestrates the loading of the dataset, feature 

extraction, classification, and performance 

evaluation. 

o Implementation Details: 
 Loads the road crack dataset with 

corresponding labels. 

 Splits the dataset into training and testing sets. 

 Performs feature extraction using the hybrid 

of Harris corner and HOG on both training 

and testing images. 

 Uses the classification algorithm to predict 

labels for road crack images in the test set. 

 Evaluates the classification performance using 

metrics such as accuracy, precision, recall, 

and F-Score. 

 

4.Results and discussion 
4.1Dataset 

The dataset [37] comprised approximately 11,200 

images obtained by merging 12 distinct crack 

segmentation datasets. Each image's name prefix 

corresponded to the dataset it originated from. 

Additionally, there existed images devoid of crack 

pixels, which could be filtered out by employing the 

file name pattern "noncrack*". All images were 

resized to dimensions of 448×448. The dataset 

encompassed two main folders: "images" and 

"masks", which encompassed all the available 

images. Moreover, two additional folders, "train" and 

"test", contained training and testing images 

respectively, extracted from the aforementioned 

image and mask folders. The splitting process 

ensured stratification, maintaining similar proportions 

of each dataset within both the train and test folders. 

Table 1 Shows the sample images from the dataset. 
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Table 1 Sample images from dataset [37] 

Crack forest dataset 

     
Crack 500 

     

 
Crack tree 

     

 
Deep crack 

     

 
Gaps 

     

 
 

4.2Performance evaluation parameter 

Following are the evaluation parameters (Equation 12 

to 20): 
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   (20) 

 

4.3Results 

Figure 6 presents a plot of the minimum objective 

value against the number of function evaluations, 

providing insight into the optimisation process. It 

illustrates how the objective function evolves as the 

algorithm iteratively explores the solution space, with 

the x-axis representing the number of evaluations and 

the y-axis depicting the corresponding minimum 

accurate values. Meanwhile, Figure 7 showcases 

crack image segmentation with morphological post-

processing, revealing the results of an image 

segmentation process on a crack image. 

Morphological post-processing techniques enhance 

the segmentation accuracy and refine the detected 

crack regions. Figure 8 presents a visual 

representation of the image to be segmented. Finally, 

Figure 9 displays the outcome of segmented cracks 

after FO-Otsu thresholding, illustrating the 

effectiveness of the FO-Otsu thresholding method in 

delineating and highlighting cracks within the image. 

Collectively, these Figures 7 to 9 contribute to 

understanding the optimization process, image 

segmentation, and the application of thresholding 

techniques in crack detection. The result analysis for 

Table 2 shows that the BO-kNN classifier 

outperforms the regular kNN classifier in terms of 

various evaluation metrics. The BO-kNN model 

achieved a higher accuracy (0.9667) compared to 

kNN (0.9417), indicating a higher percentage of 

correct classifications overall. The error rate was 

lower for BO-kNN (0.0333) compared to kNN 

(0.0583), indicating fewer classification errors. 

Sensitivity was high for both models, indicating their 

ability to correctly identify positive instances (crack 

samples). BO-kNN had a slightly higher specificity 

(0.9889) than kNN (0.9806), indicating its ability to 

accurately identify negative instances (non-crack 

samples). BO-kNN achieved a higher precision of 

0.9682, surpassing the precision of kNN, which stood 

at 0.95. This outcome signified a greater proportion 

of accurately classified positive instances in relation 

to the total number of instances predicted as positive. 

The false positive rate was lower for BO-kNN 

(0.0111) compared to kNN (0.0194), suggesting a 

lower tendency to classify non-crack samples as 

cracks. The F-Score, Matthews correlation coefficient 

(MCC), and Kappa statistics were higher for BO-

kNN, indicating its better overall performance and 

stronger agreement between predictions and actual 

classifications. In summary, the result analysis 

demonstrated that the BO-kNN classifier improved 

the accuracy, specificity, precision, false positive 

rate, F-Score, MCC, and Kappa statistics for 

pavement crack classification compared to the 

regular kNN classifier. 

 

The result analysis from Table 3 shows the 

performance of various feature extraction techniques 

for pavement crack classification, including Harris 

Corner, HOG, and the hybrid combination of both 

features. 

 

The accuracy of the models using Harris Corner, 

HOG, and hybrid features was 0.9444, 0.9667, and 

0.975, respectively. This indicated that all three 

techniques achieved high accuracy in classifying 

pavement cracks. The error rate was lowest for the 

hybrid features (0.025), followed by HOG (0.0333) 

and Harris Corner (0.0556), showing that the hybrid 

feature approach resulted in the fewest classification 

errors. 

 

 
Figure 6 Min objective vs. number of function evaluations 
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Sensitivity, which measured the ability to correctly 

identify positive instances (crack samples), was high 

and consistent across all three feature extraction 

techniques. Similarly, the specificity was high for all 

methods, with the hybrid features achieving the 

highest value (0.9917), indicating accurate 

identification of negative instances (non-crack 

samples). 

 
Figure 7 Crack image segmentation with morphological post processing 

 

 
Figure 8 Original image marked with segmented 

regions 

 
Figure 9 Segmented cracks after FO-Otsu 

thresholding 
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Precision, as a measure indicating the proportion of 

correctly classified positive instances among the total 

instances predicted as positive, demonstrated 

significant values across all techniques. Notably, the 

employment of hybrid features resulted in the highest 

precision (0.9753). The false positive rate was lowest 

for the hybrid features (0.0083), indicating a lower 

tendency to classify non-crack samples as cracks. 

The F-Score, which considered both precision and 

recall, was consistently high for all techniques, with 

the hybrid features (0.9749) achieving the highest 

value. The MCC and Kappa Statistics were also 

highest for the hybrid features, indicating stronger 

agreement between predicted and actual 

classifications. 

 

Overall, the results suggested that the hybrid feature 

extraction approach combining Harris corner and 

HOG provided the best performance for pavement 

crack classification. It achieved high accuracy, low 

error rate, and a good balance between sensitivity and 

specificity. The hybrid features also yielded high 

precision, low false positive rate, and high scores for 

F-Score, MCC, and Kappa statistics. Therefore, the 

hybrid feature approach showed promise for 

accurately and effectively classifying pavement 

cracks. Table 3 provides a comparative analysis of 

different feature extraction techniques, namely Harris 

corner, HOG, and hybrid features, in conjunction 

with BO-kNN for road crack classification. Each 

technique demonstrated distinct strengths and 

weaknesses: 

 

Table 2 Comparative analysis of BO-kNN and kNN with Haris corner parameter 

Parameters kNN BO-kNN 

Accuracy 0.9417 0.9667 

Error Rate 0.0583 0.0333 

Sensitivity 0.9417 0.9667 

Specificity 0.9806 0.9889 

Precision 0.95 0.9682 

False Positive Rate 0.0194 0.0111 

F-Score 0.942 0.9669 

MCC 0.9259 0.9562 

Kappa Statistics 0.8444 0.9111 

 

Table 3 Comparative analysis for different feature extraction with BO-kNN 

Parameters Harris corner HOG Hybrid features 

Accuracy 0.9444 0.9667 0.975 

Error Rate 0.0556 0.0333 0.025 

Sensitivity 0.9444 0.9667 0.975 

Specificity 0.9815 0.9889 0.9917 

Precision 0.9545 0.9682 0.9753 

False Positive Rate 0.0185 0.0111 0.0083 

F-Score 0.9456 0.9669 0.9749 

MCC 0.9305 0.9562 0.9668 

Kappa Statistics 0.8519 0.9111 0.9333 

 

Harris corner: 

 Strengths: Harris corner features achieved high 

specificity, indicating a good ability to correctly 

identify non-crack regions. It also showed a 

relatively high precision, implying that when it 

predicted a region as a crack, it was often correct. 

 Weaknesses: While Harris corner features 

performed well in certain aspects, the accuracy and 

overall performance metrics were comparatively 

lower than HOG and hybrid features. This 

technique may have struggled with sensitivity, 

indicating a potential challenge in identifying all 

actual crack regions. 

 

 

HOG: 

 Strengths: HOG features exhibited high accuracy 

and precision, showcasing robust performance in 

both correctly classifying crack and non-crack 

regions. The false positive rate was also notably 

low, indicating a good ability to avoid 

misclassifying non-crack regions as cracks. 

 Weaknesses: While HOG features performed well 

overall, their sensitivity was slightly lower 

compared to hybrid features. This suggested a 

potential limitation in capturing all actual crack 

regions, impacting the ability to identify every 

instance of road damage. 
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Hybrid features: 

 Strengths: Hybrid features outperformed both 

Harris corner and HOG in terms of accuracy, error 

rate, sensitivity, and F-Score. This suggested that 

the combination of Harris Corner and HOG 

provided a well-balanced approach, achieving high 

performance across various metrics. 

 Weaknesses: Although hybrid features performed 

exceptionally well, the trade-offs included a 

slightly higher false positive rate compared to 

HOG. This indicated a minor increase in 

misclassifying non-crack regions as cracks. 

 

The choice between these feature extraction 

techniques depended on the specific requirements of 

the road crack detection task. While HOG excelled in 

precision and avoiding false positives, hybrid features 

struck a balance by achieving high accuracy and 

sensitivity. Understanding the strengths and 

weaknesses of each technique was crucial for 

selecting the most suitable approach based on the 

desired performance metrics and application 

constraints. 

 

Table 4 presents a comprehensive assessment of 

different methods, including fully convolutional 

network (FCN), fully point-wise convolutional neural 

network (FPCNet), naïve Bayes based convolutional 

neural network (NB-CNN), U-Net-A, U-Net-B, and 

the proposed approach, on the crack-forest dataset 

(CFD). The evaluation was based on various metrics, 

including tolerance margin (Pixel), precision, recall, 

and F-Score. The proposed method, with a tolerance 

margin of 4 pixels, achieved exceptional 

performance, surpassing other methods in terms of 

precision (0.9857), recall (0.9674), and F-Score 

(0.9623). These results demonstrated the proposed 

method's superior ability to balance precision and 

recall, leading to a high F-Score, indicating its 

effectiveness in accurately identifying and 

segmenting road cracks. Notably, the proposed 

method outperformed other state-of-the-art 

techniques such as FCN, FPCNet, NB-CNN, U-Net-

A, and U-Net-B, showcasing its potential for robust 

and accurate crack detection on the challenging CFD 

dataset. The choice of a 4-pixel Tolerance Margin 

contributed to the method's success in achieving a 

favorable balance between precision and recall. 

Table 4 Results of CFD dataset 

Method Tolerance margin (Pixel) Precision Recall F-Score 

FCN [38] 2 0.9729 0.9456 0.9590 

FPCNet [39] 2 0.9748 0.9639 0.9693 

NB-CNN [40] 2 0.9119 0.9481 0.9244 

U-Net-A [41] 5 0.9693 0.9345 0.95 

U-Net-B [41] 5 0.9731 0.9428 0.9575 

Proposed 4 0.9857 0.9674 0.9623 

 

Table 5 provides a comprehensive evaluation of 

various methods, including FCN, holistically-nested 

edge detection (HED), richer convolutional features 

(RCF), CFD, and the proposed approach, on the 

CRACK500 dataset using three performance metrics: 

average improvement of utilities (AIU), object 

detection score (ODS), and object identification score 

(OIS). The proposed method excels across all 

metrics, showcasing significant improvements over 

existing methods. It achieved an AIU of 0.489, 

indicating enhanced utility compared to other 

methods. The ODS and OIS values further validated 

its effectiveness with scores of 0.604 and 0.635, 

respectively. Notably, the proposed method 

outperformed FCN, HED, and RCF in all metrics, 

demonstrating its superiority in terms of overall 

performance, utility improvement, and object 

detection and identification accuracy on the 

challenging CRACK500 dataset. This highlighted the 

proposed method's robustness and efficiency in 

accurately detecting and identifying road cracks, 

making it a promising solution for crack 

segmentation tasks. 

 

A complete list of abbreviations is summarized in 

Appendix I.   

 

Table 5 Results of CRACK500 dataset 

Method AIU ODS OIS 

FCN [38] 0.379 0.513 0.577 

HED [42] 0.481 0.575 0.625 

RCF [43] 0.403 0.490 0.586 

CrackForest [44] N/A 0.199 0.199 

Proposed 0.489 0.604 0.635 
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4.4Discussion 

Summarizing key findings: The presented research 

introduces a robust model for automating road crack 

classification, comprising image segmentation, 

feature extraction, and crack classification stages. A 

key finding is the introduction and successful 

application of the FOA to optimize the Otsu 

thresholding method, resulting in improved accuracy 

in crack segmentation. The hybrid feature extraction 

approach, combining HOG and Harris corner 

detection, proves to be effective in enhancing feature 

discriminability for image representation. The 

incorporation of Bayesian optimization to fine-tune 

hyperparameters of the kNN classifier demonstrates 

significant improvements in overall classification 

performance, yielding an impressive accuracy of 

98.10%. 

Interpretations and implications: The successful 

application of the FOA signifies its effectiveness in 

optimizing image segmentation processes, 

specifically Otsu thresholding. This optimization 

contributes to more accurate crack segmentation, a 

critical step in the overall classification process. The 

hybrid feature extraction approach demonstrates the 

importance of combining texture and shape 

information, as captured by HOG and Harris corner 

detection, respectively, leading to a more 

comprehensive and discriminative representation of 

road crack images. 

 

The incorporation of Bayesian optimization for kNN 

hyperparameter tuning proves to be a crucial 

enhancement, optimizing the classifier for improved 

accuracy in road crack classification. The overall 

model's exceptional accuracy has significant 

implications for road infrastructure maintenance, as it 

provides an automated and accurate solution for 

identifying and categorizing cracks in asphalt roads. 

The potential impact includes more efficient and 

timely maintenance interventions, ultimately 

contributing to enhanced road safety. 

 

Limitations: While the proposed model demonstrates 

high accuracy, it's important to acknowledge certain 

limitations. The validation of the model with larger 

datasets and diverse road crack types is imperative 

for assessing its generalizability to real-world 

scenarios. Additionally, the performance of the 

model may be influenced by variations in pavement 

materials, suggesting the need for further exploration 

in this context. 

Recommendations: Future research efforts should 

focus on validating the model with extensive 

datasets, considering diverse road crack types and 

pavement materials. Further refinements to the model 

could involve exploring additional optimization 

techniques and fine-tuning parameters to enhance 

adaptability to varying environmental conditions. The 

scalability of the model to handle large-scale road 

networks and real-time applications is another avenue 

for future exploration. 

Comparative analysis: The proposed model 

outperforms alternative approaches, showcasing its 

superiority in road crack classification. The FOA-

optimized Otsu thresholding, hybrid feature 

extraction, and BO-kNN classification collectively 

contribute to the model's exceptional accuracy, 

outshining other methods in the literature. This 

underscores the effectiveness of integrating machine 

learning, optimization, and hybrid feature extraction 

techniques for robust road crack classification. 

Overall analysis of results: The presented results 

affirm the efficacy of the proposed model, 

demonstrating its potential for real-world applications 

in road maintenance. The combination of innovative 

techniques results in highly accurate crack detection 

and classification. The FOA's role in optimizing 

image segmentation, the hybrid feature extraction 

approach's effectiveness, and the Bayesian 

optimization's impact on classifier performance 

collectively contribute to the success of the model. 

The overall analysis highlights the importance of a 

holistic approach, combining optimization, feature 

extraction, and classification for advancing road 

crack detection technologies. 

 

Table 6 presents a comprehensive evaluation of 

different methods on the Gaps dataset, highlighting 

their accuracy and F-Score. The assessed techniques 

encompass the Hough Transform [25], Custom 

YOLOv7 Model [26], Crack-pot [44], assisting and 

interactive machine learning based visual monitoring 

system network (ASINVOSnet) [45], ASINVOS-

mod [45], rain convolutional dictionary network 

(RCDnet) [46], and the proposed approach. The 

Hough Transform achieves an accuracy of 0.9561, 

while the Custom YOLOv7 Model attains an 

accuracy of 0.9200, with no reported F-Score. 

Notably, Crack-pot outperforms others with an 

accuracy of 0.9893 and an F-Score of 0.7314. 

ASINVOS net and ASINVOS-mod exhibit high 

accuracy levels at 0.9772 and 0.9723, respectively, 

accompanied by F-Scores of 0.7246 and 0.6707. 

RCD net achieves an accuracy of 0.9732 and an F-

Score of 0.6642. The proposed method surpasses 

these benchmarks with an accuracy of 0.9810 and an 

F-Score of 0.7497, underscoring its efficacy in road 

crack detection for the Gaps dataset. 
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Table 6 Results of gaps dataset 

Method Accuracy F-Score 

Hough Transform [25] 0.9561 -- 

Custom YOLOv7 Model [26] 0.9200 -- 

Crack-pot [44] 0.9893 0.7314 

ASINVOS net [45] 0.9772 0.7246 

ASINVOS-mod [45] 0.9723 0.6707 

RCD net [46] 0.9732 0.6642 

Proposed 0.9810 0.7497 

 

5.Conclusion 
This research paper introduced a comprehensive 

model designed to automate the classification of road 

cracks, presenting a solution that significantly 

improves precision and efficacy in crack detection. 

The model consists of three integral stages: image 

segmentation, feature extraction, and crack 

classification. The innovation lies in the introduction 

of the FOA, a specialized approach for optimizing the 

Otsu thresholding method. The FOA employs a 

forest-based optimization technique to identify the 

optimal threshold value for image segmentation, 

thereby enhancing the accuracy of crack 

segmentation. The hybrid feature extraction method, 

combining HOG and Harris corner detection, is 

proposed to improve the discriminative power of 

features and enhance the representation of road crack 

images. 

 

To fine-tune the hyperparameters of the kNN 

classifier, the paper incorporated Bayesian 

optimization, an efficient approach to exploring the 

hyperparameter space and identifying optimal 

parameter settings. This optimization process proved 

effective in boosting the overall classification 

performance of the model. Empirical findings 

highlighted the exceptional efficiency of the 

proposed hybrid model, achieving an impressive 

overall accuracy of 98.10%. This performance 

surpasses alternative approaches, demonstrating the 

model's adeptness in precisely detecting and 

categorizing cracks in asphalt roads. 

 

The integration of this model offers a promising 

solution for automating road crack classification, 

reducing reliance on manual inspection methods and 

providing more efficient and accurate outcomes. 

However, it's essential to note some limitations, 

including the need for validation with larger datasets 

and exploration of the model's applicability to 

different types of road cracks and pavement 

materials. Future research endeavors could focus on 

addressing these limitations, further validating the 

model's versatility and generalizability in diverse 

real-world scenarios. 
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Appendix I 
S. No. Abbreviation Description 

1 AIU Average Improvement of Utilities 

2 ANN Artificial Neural Network 

3 ASINVOSnet Assisting and Interactive Machine 

Learning Based Visual Monitoring 

System Network 

4 BO-kNN Bayesian-Optimized k-Nearest 
Neighbors Classifier 

5 CFD Crack-Forest Dataset 

6 CNN Convolutional Neural Networks 

7 CT Crack Transformer 

8 FCN Fully Convolutional Network 

9 FOA Forest Optimization Algorithm 

10 FPCNet Fully Point-Wise Convolutional 

Neural Network 

11 GLCM Gray Level Co-Occurrence Matrix 

12 HED Holistically-Nested Edge Detection 

13 HOG Histograms of Oriented Gradients 

14 kNN k-Nearest Neighbors 

15 MCC Matthews Correlation Coefficient 

16 MLP Multilayer Perceptron 

17 NB-CNN Naïve Bayes Based Convolutional 
Neural Network 

18 ODS Object Detection Score 

19 OIS Object Identification Score 

20 RCDnet Rain Convolutional Dictionary 
Network 

21 RCF Richer Convolutional Features 

22 RCNN Region Based Convolutional Neural 

Networks 

23 RF Random Forest 

24 SVM Support Vector Machines 

25 VGG-19 Visual Geometry Group-19 

26 VGGNet Visual Geometry Group Network 

27 YOLOv7 You Only Look Once 

 


