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1.Introduction 
As per the Global Assessment Report (GAR 2022) 

published by the “United Nations Office for Disaster 

Risk Reduction” [1], the frequency of disasters has 

increased significantly over the years and is projected 

to surge by 40 percent by the year 2030. This 

increased prevalence of disasters has also led to a rise 

in both human fatalities and economic ramifications 

across the globe. Addressing such ecological 

disruptions necessitates the acquisition of human-

centric information for disaster response 

organizations [2]. In recent years, social media (SM) 

has emerged as a pertinent alternative information 

conduit alongside traditional media during disaster 

events such as floods, earthquakes, hurricanes, etc.  

[3].Throughout the past decade, various SM 

platforms, particularly Twitter, have played a 

significant role in humanitarian response tasks due to 

their widespread utilization in disseminating 

information and gathering valuable insights [4]. 

 
*Author for correspondence 

Recent studies have highlighted the significant role of 

SM images in the aftermath of disasters. They serve 

to convey accurate details regarding the extent of 

devastation [5], aid humanitarian groups in assessing 

infrastructural harm [6], and expedite the 

identification and rescue of missing or injured 

persons [7]. 

 

However, despite the potential benefits of integrating 

SM as an additional resource within established 

disaster response frameworks, humanitarian 

authorities raise concerns about the veracity of the 

data disseminated on such platforms. The credibility 

of SM-driven information remains a significant issue 

for both the general public and disaster response 

agencies [4]. SM platforms have become significant 

contributors to the propagation of fake news [8, 9] 

and numerous instances have occurred where forged 

images have gone viral on SM platforms, especially 

Twitter, during disasters, creating panic among the 

population. For instance, during Hurricane Sandy in 

2012, Twitter played a crucial role in keeping people 
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informed, however, malevolent users also extensively 

utilized SM to propagate misinformation and 

misleading images in real-time [10]. Similarly, 

during the recent Japan Typhoon, a series of forged 

images shared on Twitter, purportedly showing 

flooded homes, quickly gained widespread attention, 

as reported by the Shizuoka prefectural government 

(GOV) [11]. The forged images are depicted in 

Figure 1 (a), (b), (c), which rapidly went viral on 

Twitter during disasters. 

 

 
                   (a)                                                    (b)                                                   (c) 

Figure 1 Viral forged pictures shared during disasters on Twitter (a) Picture of shark pasted into the flooded street 

during Hurricane Sandy (b) Another forged picture of a shark on the flooded street during Hurricane Sandy, and (c) 

Forged photos of flooding during Japan Typhoon on Twitter 

 

With the widespread availability of image-altering 

software and advancements in artificial intelligence, 

images can be easily manipulated. To detect image 

manipulations, image forensics methods are broadly 

categorized into active and passive, as illustrated in 

Figure 2. Active methods require prior knowledge 

regarding the evaluated image to function effectively. 

In these methods, an original image is implanted with 

a digital signature or digital watermark, which is 

subsequently removed at the receiver end and 

compared to the original. Conversely, passive 

methods [12] are employed in the absence of prior 

knowledge and rely on the inherent characteristics of 

the image. Often referred to as blind techniques for 

detecting forgery, passive methods are more practical 

and viable. These methods include the detection of 

copy-move, splicing, and other forgeries. Copy-move 

forgery is a deceptive technique where a section of an 

image is duplicated and then inserted into another 

area of the same image, either to hide or duplicate 

specific elements. While image splicing involves 

generating a composite image by combining parts of 

different images. 

 

 
Figure 2 Forensic methods 
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Copy-move and splicing are recognized as the most 

prevalent and harmful digital image forgeries, often 

created for spreading disinformation [13, 14]. 

Evaluating the credibility of a digital image is 

currently one of the most pressing issues. Forged 

images shared in disasters can provide inaccurate 

depictions of the disaster's impact, hindering effective 

decision-making, misguided resource allocation, 

delayed responses, and compromised situational 

awareness. This can result in increased risks for both 

responders and affected communities. Therefore, 

assessing the credibility of information gleaned from 

SM images is crucial, yet remains largely 

underexplored in the realm of disaster response.  

 

Moreover, the detection of forged images over SM 

platforms presents additional challenges. As images 

traverse these platforms, they undergo compression 

to accommodate server limitations, both during 

upload and download processes.  Additionally, SM 

platforms often employ multilevel quality 

compression techniques customized to their needs, 

enabling rapid data transmission for swift image 

sharing. However, compression introduces blurring, 

noise and can mask manipulation artifacts, thus 

hindering accurate detection [1517]. Therefore, it is 

necessary to build specific methods to detect altered 

images shared in disasters over SM platforms. As far 

as current knowledge suggests, there hasn't been any 

research conducted specifically to detect forged 

disaster images on SM. There is no benchmark 

dataset for forged disaster image detection either. 

Therefore, the objective of this study is twofold: first, 

to introduce a novel ForgeDisaster SM disaster image 

forgery dataset, and second, to present a unified 

approach for detecting both copy-move and splicing 

forgeries on SM disaster images. 

   

The dataset is designed to serve as a benchmark for 

evaluating novel techniques and methodologies in the 

domain. It comprises balanced sets of authentic and 

forged SM disaster images with copy-move and 

splicing forgeries. Furthermore, the approach offers a 

promising solution to the challenges posed by 

manipulated content on SM platforms during disaster 

situations. The proposed approach encompasses three 

key phases: pre-processing, feature extraction, and 

classification. Firstly, the pre-processing stage aims 

to enhance the quality of low-quality images by 

leveraging enhancement filters within the YCbCr 

color space. This step not only mitigates the effects 

of compression but also facilitates the identification 

of key features by reducing noise and blurring. 

Subsequently, in the feature extraction stage, a robust 

combination of local binary pattern (LBP) and 

discrete fourier transform (DFT) is employed. LBP 

excels at capturing local texture patterns, making 

tampering artifacts more discernible, while DFT 

transforms the LBP image from the spatial domain to 

the frequency domain. This transformation enhances 

the detection of frequency fluctuations caused by 

these artifacts, leveraging standard deviation (STD) 

to further refine the analysis. Lastly, the classification 

stage utilizes support vector machine (SVM) to 

classify the STD based features, enabling accurate 

identification of forged and authentic images on SM 

during disasters. This comprehensive approach aims 

to establish a reliable framework for detecting forged 

disaster images, thus enhancing the integrity of 

information dissemination during critical situations 

on SM. 

 

The following list outlines the contributions of the 

proposed work: 

 A novel ForgeDisaster dataset for SM image 

forgery detection is developed using copy-move 

and splicing forgery methods, ForgeDisaster 

dataset addresses the lack of a benchmark dataset 

for disaster domain SM image forgery detection 

research. 

 This paper provides benchmark results for SM 

image forgery detection in the disaster domain by 

presenting a new approach for identifying both 

copy-move and splicing forgeries, utilizing image 

enhancement filters in YCbCr color space for pre-

processing, LBP and DFT for feature extraction 

and SVM for classification. 

 The proposed approach is juxtaposed against 

existing general domain forgery detection 

methods, demonstrating superior performance 

when evaluated using the ForgeDisaster dataset. 

 In addition, various pre-trained deep learning 

models are employed and evaluated using Forge 

Disaster dataset to provide results that can be used 

as a baseline for future deep learning solutions. 

 

Following is the arrangement of the remaining 

portions of the paper. The related literature is 

presented in section 2. Section 3 covers the materials 

and methods. Section 4 presents the results of various 

experiments. The analysis of results is discussed in 

section 5. Lastly, section 6 serves to conclude the 

paper by outlining future directions for further 

exploration. 
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2.Literature review 
As the current study focuses on detecting SM image 

forgery within the context of disasters, the related 

literature is presented in two distinct sections: (i) SM 

disaster image analysis, and (ii) Image forgery 

detection methods. 

 

2.1SM disaster image analysis 

During disasters, SM content has been shown to be 

beneficial in assisting various stakeholders, 

particularly humanitarian organizations [18]. There 

has also been a rise in efforts to create automated 

methods and systems for SM content analysis and the 

extraction of useful insights, mostly driven by 

Twitter and Facebook content. The use of Twitter 

content has continued to be more popular than 

Facebook because of its rapid access to timely multi-

modal content, which is critical for GOV and non-

government organizations (NGOs) [19]. The majority 

of earlier studies in the disaster domain have centered 

on the analysis of textual content [5]. However, there 

has recently been a surge in interest in visual data 

analysis due to the greater role that images play in 

disaster management tasks as per various studies [20, 

21]. A number of disaster-related SM image datasets 

such as DAD [5],  CrisisMMD [22], and MEDIC [19] 

are publicly available and used for developing 

automated methods for various disaster management 

tasks. 

  

Nguyen et al. [5] conducted an analysis of images 

posted on SM platforms during natural disasters to 

gauge the severity of damage caused. They employed 

a fine-tuned deep convolutional neural network 

(CNN) model to classify the images into three 

categories: severe damage, mild damage, and no 

damage. It achieved an accuracy of up to 90%. 

Similarly, in [23] damage severity assessment was 

conducted from SM images during disasters using 

visual geometry group (VGG) model. However, the 

credibility of the images was not verified before 

assessing the damage depicted in the disaster images. 

Ning et al. [24] proposed a flood detection system 

based on SM images. They iteratively trained a CNN 

model and achieved a 93% accuracy in detecting 

flood-related images. However, the credibility of the 

SM flood images was not assessed in their study. 

 

Hassan et al. [25] presented a deep visual sentiment 

analyzer for disaster-related images, employing CNN 

and transfer learning techniques. While their work 

could potentially aid responders in analyzing the 

emotions of affected individuals based on image 

content, a significant limitation arises from the lack 

of consideration for image authenticity. 

  

Kotha et al. [26] proposed a model based on 

RegNetY320 for categorizing SM images into 

humanitarian information classes. Their model 

attained an accuracy of 80.20%. These works hold 

significant potential for humanitarian aid workers, 

but the authenticity of images has not been verified in 

these studies which can have serious repercussions on 

response efforts, public trust, and the well-being of 

affected communities. 

 

2.2Image forgery detection methods 

For detecting forgery in images, numerous passive 

methods have been developed over the years by 

researchers utilizing different image forgery datasets 

such as CASIAv1.0 and CASIAv2.0 [27], 

COLUMNBIA [28], MICC-F220, MICC-F2000 [29], 

and CoMoFod [30]. An approach for detecting 

forgery based on the fusion of LBP, discrete wavelet 

transforms (DWT), and principal component analysis 

has been proposed in [31]. The integration of LBP 

and DWT yielded a notable enhancement in 

accuracy. It achieved an accuracy rate of 97.21% on 

CASIAv1.0. and 95.13% on Columbia dataset. 

However, this method was limited to detecting 

splicing forgery exclusively. 

 

Another method [32] developed for tamper detection, 

utilized DWT with histograms of LBP to detect 

spliced images. The feature vector was formed by 

combining LBP histogram from the four wavelet sub 

bands. To determine the accuracy, SVM was used on 

10 folds which attained an accuracy of 96.62% on 

CASIAv1.0, 94.04% on CASIAv2.0 and 87.05% on 

Columbia datasets. However, the performance was 

impacted by the small size of images, and this 

approach may not work well for detecting copy-move 

forgery. 

 

Hayat and Qazi [33] presented an approach centered 

on the fusion of DWT and discrete cosine transform 

(DCT) for copy-move forgery detection. They started 

by obtaining the DWT approximation sub band, and 

then they applied DCT to the overlapping picture 

blocks. In order to make a more accurate comparison 

of the blocks, additional correlation coefficients were 

utilized. Their approach achieved an accuracy of 

73.62% for detecting images tampered with copy-

move. In addition to having low accuracy, this 

method may underperform in scenarios involving 

occlusion and images with repeated patterns and 

spliced regions. 
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In [34], a multi-scale LBP and DCT was utilized for 

tamper detection. This method involved computing 

multi-scale-LBP, where each pixel had multiple LBP 

codes and passing these multi-scale-LBP 

representations to DCT to extract coefficients. To 

construct a feature set for the image, STD was 

computed with respect to the coefficients. This 

approach achieved an accuracy of up to 97.3%. 

However, it was limited to detecting splicing and 

may not be effective for other types of tampering. 

 

In a separate study, Parnak et al. [35] focused on 

splicing detection. They proposed a novel feature set 

derived from the mantissa distribution of DCT 

coefficients in images, aiming to enhance detection 

performance. The approach demonstrated exceptional 

accuracy, achieving a remarkable 99.78% accuracy 

when evaluated on the CASIAv1.0 dataset. However, 

their approach was specific to detecting splicing 

forgery only. 

  

Copy-move detection was addressed in [36], wherein 

DCT coefficients were utilized as features for blocks 

of various sizes. The process involved transforming 

the images from red green blue (RGB) to grayscale 

and dividing them into overlapping blocks, from 

which DCT coefficients were computed. These 2-

dimensional (2D) coefficients were then rearranged 

into a feature vector using zig-zag scanning. 

Subsequently, all blocks were sorted using 

lexicographic order, facilitating the identification of 

duplicated blocks through Euclidean Distance 

computation. The study demonstrated that employing 

8 × 8 overlapping blocks yielded superior 

performance in terms of precision and recall for 

forged detection. However, performing post-

processing procedures on tampered images resulted 

in significant computational complexity and 

inaccuracies in detecting tampered regions. 

 

For detecting both copy-move and splicing image 

forgery, Alahmadi et al. [14] achieved promising 

outcomes by employing a combination of LBP and 

DCT. Initially, LBP was applied to blocks extracted 

from the picture chroma channel, followed by the 

application of DCT on these blocks. They then 

evaluated a feature for each DCT coefficient, 

calculated as the STD of DCT coefficients contained 

within each block. This method yielded impressive 

accuracy rates, with 97% on CASIAv1.0, 97.50% on 

CASIAv2.0, and 97.77% on the Columbia dataset. 

Conversely, in [37], Islam et al. developed a forgery 

detection system that initially applied DCT followed 

by LBP. They computed the mean value of all LBP 

blocks to obtain a fixed number of features. Their 

method demonstrated promising results for detecting 

both copy-move and splicing forgeries, achieving an 

accuracy of 99.55% on CASIAv1.0, 99.88% on 

CASIAv2.0, and 98.20% on the Columbia dataset. 

Additionally, they conducted experiments with 

internet of things data, attaining good performance in 

this domain as well. However, these methods were 

not tested with SM disaster images. 

 

Similarly, Dua et al. [38] presented a forgery 

detection system to detect both forgeries. They took 

advantage of the diversity in statistical features of the 

overall image‟s AC coefficients by calculating the 

STD and count of non-zero DCT coefficients with 

respect to every AC frequency component 

individually. The proposed features were examined 

for the test image and its cropped counterpart. The 

retrieved features then utilized in conjunction with 

the SVM to distinguish between tempered and 

authentic photos with an accuracy of 93.2% on 

CASIAv2.0 and 98.3% on CASIAv2.0 datasets. 

 

Recently, various advanced models built on deep-

learning methods that automatically learn features 

have been investigated. More specifically, CNN is 

being used increasingly in recent methods for feature 

extraction and categorization. Xiao et al. [39] 

provided a forgery detection method combining a 

“coarse-to-refined CNN” and “diluted adaptive 

clustering”. Their approach used CNNs to obtain 

differences in image properties between tampered 

and untampered regions across varying scales. After 

identifying suspicious regions, forgery regions were 

generated using adaptive clustering. The method 

achieved an F1 score of up to 69.5%. However, it's 

important to note that the approach was specific to 

detecting splicing forgery and may exhibit longer 

runtime due to its sophisticated detection 

mechanisms. 

 

In another work, Qazi et al. [40] introduced an 

approach for splicing detection based on the 

ResNet50v2 architecture. In this approach, image 

batches were inputted, and the weights of a “you only 

look once” CNN were utilized through the 

architecture of ResNet50v2. This method achieved a 

high accuracy of 99.3% on the CASIAv2.0 dataset. 

However, it's important to note that this method was 

specifically tailored for detecting splicing forgery and 

may not be suitable for other types of forgery 

detection. 
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Abdalla et al. [41] utilized a fusion processing model 

for forgery detection, which combined a deep 

convolutional model with an adversarial model. 

Operating on a two-branch architecture alongside a 

fusion module, the method employed CNN and 

generative adversarial network to pinpoint and 

characterize copy-move regions. Performance results 

fall within the range of 93% to 97%. However, the 

effectiveness of the method was contingent upon the 

configuration of its parameters. 

 

Goel et al. [42] presented an algorithm for copy-

move detection employing a novel dual-branch CNN. 

This CNN architecture obtained multi-scale features 

through varying kernel sizes in each branch. 

Subsequently, the multi-scale features were fused to 

enhance accuracy. Remarkably, the proposed 

approach achieved a commendable accuracy of 96% 

on the MICC F-2000 dataset. However, the 

robustness of the model wasn‟t tested on other types 

of forgeries. 

 

In [43], an end-to-end dual-channel U-Net model was 

introduced for detecting and locating splicing 

forgery. High-pass filters were used to get residual 

information, capturing tampered area edges. The 

model then fused deep features from original and 

residual images, then extracted tampered features 

with varying granularity and performs secondary 

fusion. This approach achieved 97.93% accuracy on 

CASIAv2.0 and 97.27% on Columbia datasets, 

however, it was limited to fixed-size images and 

specialized for splicing forgery detection only. 

 

Walia et al. [44] introduced a feature fusion approach 

to detect forgeries in digital images. In this approach 

handcrafted features and deep high-level features 

were amalgamated to form a comprehensive feature 

vector. This vector was then employed for 

classification using a shallow neural network. With a 

high accuracy of 99.3% on CASIAv1.0 and 97.94% 

on CASIAv2.0 datasets, this proposed approach 

demonstrated promise for offline forensic digital 

image analysis. However, the high dimensionality of 

the fused features posed a challenge for real-time 

analysis, serving as a potential bottleneck in practical 

implementation. 

 

Sabeena and Abraham [45] presented a forgery 

detection approach centered on a convolutional 

attention-based model. This study employed the 

“convolutional block attention module” for feature 

extraction, image segmentation, and forgery 

localization. By leveraging spatial and channel 

attention features fused through the convolutional 

block attention mechanism, comprehensive context 

information was captured, enriching feature 

representation. The approach achieved an impressive 

99.6% accuracy for copy-move detection on the 

ComoFod dataset. However, the method lacks in 

generalizability to other types of forgeries. 

 

Vijayalakshmi et al. [46] presented a copy-paste 

detection approach, comprising three key operations: 

“pre-processing”, “image augmentation”, and 

“classification”. In the pre-processing phase, tasks 

such as image normalization, rescaling, and error 

level analysis (ELA) were conducted to enhance 

accuracy performance. Image augmentation 

techniques were then employed to expand the dataset 

size. Finally, a convolutional autoencoder-based 

technique was provided for forgery classification. 

The method achieved an impressive accuracy of 

99.2%. However, this approach was specifically 

designed for detecting copy-paste image forgeries 

and may experience reduced performance when 

images are subjected to high noise. 

 

Ali et al. [47] presented a custom model based on 

CNN consisting of three convolutional layers and a 

dense fully connected layer. They used ELA as an 

input to CNN for detecting both splicing and copy-

move manipulations and achieved a validation 

accuracy of 92.23% on CASIA.2.0 dataset. 

 

The existing literature on disaster management 

utilizing SM has explored various facets, yet a 

significant gap persists: the absence of systematic 

assessment of image credibility from SM platforms 

before their integration into disaster-related tasks. 

Despite the availability of numerous SM image 

datasets for disaster management, the lack of ground 

truth labels regarding image credibility impedes their 

utility in assessing image authenticity. Based on the 

analyzed literature on image forgery detection, 

numerous image forgery detection methods exist, 

however, none have been evaluated on SM disaster 

images. The unique challenges posed by SM 

platforms, such as compression-induced noise and 

degradation, complicate SM image forgery detection, 

necessitating specific approaches. Moreover, 

majority of the approaches focus on either copy-

move or splicing forgery types.  

 

In response to these challenges, this study addresses 

critical gaps by systematically evaluating the 

credibility of images sourced from SM platforms 

before their integration into disaster-related tasks. A 



Saima Saleem et al. 

558 

 

labeled dataset addressing the credibility of SM 

disaster images is provided, overcoming limitations 

in existing SM image datasets. Moreover, the 

challenges posed by forged images on SM platforms 

are recognized, and a specialized approach is offered, 

tailored to accommodate these limitations. Unlike 

existing forgery detection methods that typically 

focus on either copy-move or splicing forgery, the 

proposed approach provides comprehensive coverage 

for both types of forgery, aiming to enhance the 

credibility of SM images in disaster response 

contexts. 

 

3.Materials and methods 

3.1Experimental dataset 

This section introduces the novel ForgeDisaster 

dataset. The creation of this dataset involved three 

stages described below. The overall dataset creation 

process is shown in Figure 3. 

 

 

 
Figure 3 ForgeDisaster dataset creation process 

 
 

3.1.1Dataset collection 

The images were collected from the Twitter SM 

platform that were posted during different natural 

disasters like floods, earthquakes, hurricanes, 

droughts, tsunamis, wildfires, cyclones, and tornados 

occurred in different places of the world using the 

SnScrape Twitter scrapping tool. The images were 

extracted based on various hashtags and keywords 

that involved words/phrases about disasters. 
3.1.2Dataset filtering 

The quality of the training data has a substantial 

effect on how well any detection system can 

classify forged content. For this reason, images 

from reliable resources “from the official Twitter 

accounts of GOV, NGOs, public figures and news 

channels” were deemed authentic/genuine, and the 

rest of the images were discarded. The rationale 

behind this selection is that such organizations 

publish content that either combats fake news or is 

inherently genuine. To further ensure the veracity 

of the collected images, additional validation 

measures were implemented. Specifically, cross-

referencing was conducted using various fact-

checking sites such as Boomlive
1
, Snopes

2
, and 

PolitiFact
3
. This thorough approach aimed to 

verify the credibility of the images, thereby further 

strengthening the reliability of the dataset. 

 

Besides, duplicate images and those unrelated to 

disasters despite the posts containing disaster-

related hashtags were also discarded at this stage. 

Furthermore, formats of the images were also 

standardized to a single JPEG format as few 

images were in PNG format. Finally, a set of 740 

genuine JPEG images were obtained, having a 

varying resolution in the range of 235 × 156 to 

4096 × 3139 as shown in Figure 4. The majority 

of images were related to flood disaster, sourced 

from NGOs (such as UNOCHA, UNICEF, Red 

Cross, UNDP, etc.) followed by news channels. 

The number of authentic images according to 

image source, and type of disaster is depicted in 

Table 1 and Figure 5 (a), and (b) show their 

distribution using charts.   

                                                           
1 https://www.boomlive.in/ 
2 https://www.snopes.com/ 
3 https://www.politifact.com/ 
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Figure 4 Resolution distribution of authentic images 

 

Table 1 Number of authentic images as per source, and disaster type 

 Type #images 

Source NGO‟s 378 

News Channel 253 

Gov Org 84 

Public figure 25 

Disaster Floods 345 

Earthquake 147 

Hurricane 63 

Cyclone 61 

Drought 48 

Wildfire 42 

Tornado 25 

Tsunami 9 

 

 
                                        (a)                                                                                 (b) 

Figure 5 Percentage of authentic images according to (a) Image Source, and (b) Disaster type 
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3.1.3 Dataset preparation 

The set of genuine images were forged using two 

forgery methods: copy-move and splicing. Copy-

move forgery entails duplicating a portion of an 

image and inserting it elsewhere within the same 

image either to conceal or replicate certain 

elements. An example illustrating a copy-move 

forgery is depicted in Figure 6. The original image 

in Figure 6 (a) depicts the Ethiopia drought, 

capturing the landscape and relevant elements 

within the scene. The copy-move version in Figure 

6 (b) is created by selecting a specific region of the 

original image, such as an animal corpse, and 

duplicating it by pasting it onto another area within 

the same image. This results in the appearance of 

multiple instances of the selected object within the 

same scene. Conversely, splicing forgery involves 

combining parts of multiple images to create a 

composite image. An example illustrating a 

splicing forgery is depicted in Figure 7. The 

splicing forgery was executed through a multi-step 

process aimed at seamlessly integrating elements 

from one image into another. Initially, image (a) 

depicting the Victoria floods was selected as the 

source for the manipulated section. A portion of 

this image, specifically the rescue boat, was 

carefully extracted using image editing software. 

Subsequently, this extracted segment was 

superimposed onto the image (b). To seamlessly 

integrate the pasted regions with the background, 

operations such as cropping, resizing, rotating, 

brightness adjustment, color enhancement, etc., 

were applied achieving an illusion of a cohesive 

and natural scene. The forging process utilized 

various image editing software, including 

professional tools such as Adobe Photoshop and 

basic ones like Photpea and MS Paint. The 

majority of images underwent tampering via 

Photoshop, followed by Photopea. The images 

were then uploaded and downloaded on Twitter. 
The class distribution of ForgeDisaster is shown in 

Figure 8. 

 

                
                (a)                                                                            (b) 

Figure 6 Copy-move forgery example: (a) Original image depicting Ethiopia drought, b) Copy-move version 

created by pasting an animal corpse within the image on to the same image 

 

   
             (a)                                                      (b)                                                        (c) 

Figure 7 Splicing forgery example: (a) and (b) represent original images of Victoria floods, while (c) depicts the 

spliced image, created by pasting the rescue boat part from image (a) on to image (b) 
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3.2 Proposed approach 

The proposed approach is structured into three main 

phases: pre-processing, feature extraction, and 

classification as shown in Figure 9. In the 

subsections that follow, an in-depth explanation of 

each one of these phases is given. 
3.2.1 Pre-processing 

The primary goal of the pre-processing phase was to 

improve the quality of SM disaster images. Initially, 

all images underwent a color space transformation 

into the YCbCr color system. The YCbCr 

representation was obtained from RGB colorspace, as 

depicted in the Equations 1, 2, and 3. This 

transformation separated the image into its luminance 

(Y) and chrominance (Cb and Cr) channels. By 

isolating luminance from chrominance, a more 

precise analysis of the image can be performed. 

Moreover, working in the YCbCr color space 

reduced computational requirements, facilitating 

efficient image processing. 
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Given that images on SM are typically compressed to 

varying degrees depending on the platform's 

requirements, this compression can introduce 

unwanted noise and blurring by discarding portions 

of the original image data to reduce file size, 

consequently leading to a degradation in image 

quality. To mitigate this issue, the pre-processing 

phase employed enhancement filters such as non-

local means (NLM) and bilateral filtering for low 

quality images with a compression quality of less 

than 90%. Images having higher compression quality 

exhibited satisfactory clarity and detail, reducing the 

necessity for additional enhancement. The filters 

effectively reduced noise and blur thereby improved 

the clarity of key features in the images. The NLM 

filter was chosen as it excels in suppressing noise 

while preserving textures and details, while the 

bilateral filter is known for its ability to retain image 

edges while smoothing overall image appearance. 

Following noise reduction, subsequent processing 

was carried out on the chrominance channels, 

particularly (Cr) component, as it was found to give 

maximum accuracy after experimental verification. 

 

 
Figure 8 Class distribution of authentic and forged images: 740 authentic and 740 forged JPEG images 

 
3.2.2 Feature extraction 

In this phase, the motive was to extract features that 

were sensitive enough to spot image manipulations 

like copy-move and splicing. Splicing and copy-

move operations disrupt the fine boundary of 

tampered regions, leading to structural changes in the 

image. Consequently, the local frequency distribution 

within the forged region is altered, and the correlation 

among pixels is disturbed. These operations 

specifically affect the continuity of host image pixels, 

particularly around the edges of the forged region. 

Therefore, it‟s important to record any structural 

alterations that may have occurred in an image due to 

tampering. LBP and DFT techniques were employed 

to model the tampering traces in images. 

 

LBP  

LBP was used to accentuate the subtle alterations 

introduced by tampering in images. The Cr 

components extracted in the previous step were 

divided into 16×16 non-overlapping blocks. Breaking 

down the image into smaller blocks allows for a more 

focused analysis of specific regions and is 

computationally less expensive compared to 

processing the entire image at once. LBP values were 

then computed for each block to effectively highlight 
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the tempering artifacts. LBP is a powerful technique 

for extracting texture information, revealing patterns 

that may indicate manipulation. It achieved this by 

analyzing the intensity values of each pixel in 

relation to those of its neighbouring pixels, 

generating a binary value for each pixel based on 

these intensity variations. This binary code is then 

transformed into a decimal value, which represents 

the texture of that pixel‟s neighbourhood. Equation 4 

and 5 are utilized in the calculation of the LBP. 

       ∑  (     )       
     (4) 

 

Where    is the central pixel value,    denotes the 

values of the nearby pixels, p represents the 

neighbourhood pixel count, and r represents the 

distance from the central pixel to the surrounding 

pixels. The threshold function S(z), where z is 

     is defined as: 

 

 ( )  ,
     
     

   (5) 

 

The number of neighbours was set to eight (p= 8) 

with radius, r = 1 to compute LBP in the proposed 

method. If the intensity of the central pixel    was 

higher than that of its neighboring pixels, a value of 0 

was assigned; otherwise, a value of 1 was assigned. 

Therefore, each central pixel value was assigned an 

8-bit binary code, which was further converted into 

its respective decimal value. This resulting decimal 

value served as the LBP code for the central pixel, 

and this computation was repeated for every pixel. 

 

DFT 

To track the shifts in the LBP blocks local frequency 

distribution, DFT was employed to convert the LBP 

blocks from spatial domain to the frequency domain, 

and then statistical measures of the individual DFT 

coefficients for each block were computed. To 

efficiently compute the DFT, fast fourier transform 

(FFT) was utilized. In terms of calculation time, FFT 

is more efficient; it reduces the number of operations 

for a problem of size N from O(N
2
) to (NlogN), 

which makes it more practical for real-time 

applications. In the spatial domain, the images are 

processed in their raw form. The pixel values change 

depending on the scene in the image. In contrast, in 

the frequency domain, the rate of change of spatial 

pixel values is examined. Tamper detection relies 

heavily on the rate of change of spatial pixels, and the 

frequency domain is useful for addressing the issue 

related to this.  The output of the DFT algorithm was 

a complex number array, which was extremely 

challenging to directly visualize. For visualization 

purposes, it was transformed into a 2D space called a 

spectrum image. Figure 10 shows an example of 

spectrum image of a forged image from the dataset. 

Each point in the spectrum image denotes a specific 

frequency in the spatial domain image. The central 

values around the origin (middle) of the spectrum are 

the DC components. These coefficients describe the 

regions of the image that have low frequencies or are 

smooth. Components with higher frequencies that are 

dispersed across the spectrum fill in the detail and 

edges. Each LBP block was converted into the 

frequency domain with 2D DFT in order to capture 

shifts in the local frequency distribution. The 2D 

DFT of an input block was transmuted to discrete 

Fourier coefficients by formulation in Equation 6. 

This formula defines the DFT of an n×n matrix. 

 (   )  ∑ ∑  (   )     (
  

 
)(

  

 
)   

   
   
    (6) 

 

An image is broken down into its sine and cosine 

components, as demonstrated by the Equation 7. 

 (   )  ∑ ∑  (   ) *   
    

 
    

   
   
   

    
    

 
+    (7) 

 

Where u and v are pixel locations in the spatial 

domain, x, and y are pixel locations in the frequency 

domain. In Fourier space, the exponential term 

corresponds to the basis function for every point 

F(x,y). The equation is interpreted as follows: for 

each point F(x,y), the value is derived by multiplying 

the spatial image by the associated base function and 

adding the resulting product. The base functions are 

sine and cosine waves with increasing frequencies. 

The last thing to do was to compute the STD of every 

individual DFT coefficients of all blocks and input 

these features to the classifier for classification. The 

STD provides a measure of the variability or spread 

of pixel intensities within each block in the frequency 

domain. By computing the STD across DFT blocks, 

regions where manipulation has occurred can be 

identified. For example, areas of the image that have 

been tampered with may exhibit higher variability in 

pixel intensities compared to the surrounding 

authentic regions. This increased variability is 

indicative of the alterations introduced by the 

manipulation process, which may include the 

addition or removal of content, resulting in changes 

to the frequency distribution. 

 
3.2.3 Classification 

Detecting forged images is a binary classification 

problem that falls into two main categories (i.e., 

authentic vs. forged). After the features were 

acquired, they were input to an SVM classifier, 
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which subsequently categorized the features as 

Authentic or Forged. The popular radial basis 

function was used with SVM for the classification. 

Algorithm 1 describes the proposed method in 

pseudo-code form. 

 
Figure 9 Proposed Approach: it begins with a pre-processing phase, wherein all images are converted into the 

YCbCr color space. Subsequently, images with compression quality below 90% (Q<90%) undergo enhancement. 

Then feature extraction is done using the Cr component images, which are divided into blocks. For each block, LBP 

computation is performed followed by 2D-DFT. The STD of each frequency coefficient in the DFT is calculated 

which are subsequently utilized for classification by the SVM 

 

 
Figure 10 Example of spectrum image in frequency domain 

 

Algorithm 1: Classification of authentic and forged disaster images 

Input:  
Images: A set of N images (M1, M2, …MN)  

Parameters: Block_Size = (16,16), LBP parameters P= 8, R=1 

Output: Classification result (Authentic or Forged) 

Procedure: 

   for each image Mi (i: 1  N):  

         Pre-process image Mi 

          Divide the image Mi into non-overlapping blocks of Block_Size 

          for each block b in image Mi: 

Compute LBP of block b:          (     ) 

                             Compute DFT of LBP block:        (    ) 

Append the DFT block to an array                

           end for 
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          Compute the STD of each DFT coefficient of all blocks: 

       (          ) 

          Append the computed standard deviations as a feature vector to an array: 

              

    end for 

Use the final           array as input to SVM for detection of authentic or forged images: 

                 = 

[
 
 
 
 
                

    
    
    

                ]
 
 
 
 

  

                   (             ) 

end procedure 

 

Hyperparameter setting 

To discover best values for hyperparameters of the 

SVM model, Bayesian optimization [48] was 

employed. Bayesian optimization is an informed 

search method. It has the ability to intelligently 

navigate the hyperparameter space, leveraging 

information from previous iterations to guide the 

search towards optimal values. For the SVM model, 

the two crucial hyperparameters considered are C and 

gamma. The parameter C regulates the balance 

between achieving a smooth decision boundary and 

accurately classifying training points, whereas 

gamma impacts the shape of the decision boundary. 

To determine the best values for C and gamma, a 

search space was specified encompassing various 

candidate values. Specifically, for C, a range from 

0.1 to 50 was explored, and for gamma, values 

ranging from 0.01 to 9 were considered. Throughout 

the Bayesian Optimization process, the algorithm 

iteratively evaluated different combinations of 

hyperparameters, guided by the goal of maximizing 

the model's performance on the given task. By 

leveraging this informed search strategy, the 

combination of C=40 and gamma=0.05 were 

identified as yielding the best performance for the 

current task. 

 

3.3 Experimental setup 

This section provides details about the hardware and 

software requirements and metrics used for 

evaluation. 
3.3.1Hardware and software requirements 

All experiments were carried out on a computing 

environment equipped with an Intel Xeon processor 

and 32GB of random-access memory utilizing 

Python programming language (version 3.7.13) 

within the Jupyter Notebook environment. Anaconda 

software was also employed for managing the 

experimental setup. The experiments made use of 

various libraries including Pandas, Matplotlib, 

NumPy, os, OpenCV, PIL, scikit-learn, skimage, and 

SciPy. For implementing machine learning models 

such as random forest (RF), naïve bayes (NB), 

decision tree (DT), eXtreme gradient boosting 

(XGB), and SVM, the popular scikit-learn library 

was utilized. In addition, for implementing deep 

learning models, libraries such as Keras and 

TensorFlow were employed. These libraries provided 

the necessary tools and frameworks for developing 

and training neural network architectures. 
3.3.2 Evaluation metrics 

The description of the evaluation metrics used is 

provided below. 

Accuracy: is the proportion of accurately predicted 

images to all images and is defined by Equation 8. 

         
     

           
      (8) 

Sensitivity: is also called as recall is the ratio of 

accurately classified forged images to all forged 

images and is defined by Equation 9. 

            
  

     
     (9) 

Specificity: is the proportion of accurately classified 

authentic images to all authentic images and is 

defined by Equation 10. 

S           
  

     
   (10) 

False negative rate (   ): is the proportion of 

forged images being incorrectly predicted as 

authentic and is defined by Equation 11.  

    
  

     
      (11) 

False positive rate (FPR): is the proportion of 

authentic images being incorrectly predicted as 

forged and is defined by Equation 12. 

    
  

     
    (12) 

Area under the curve of “receiver operating 

characteristic” curve (AUC-ROC): illustrates the 

efficacy of a classifier by comparing the “true 

positive rate” with the “FPR” at different thresholds 

of the classifier outcome. An AUC-ROC=1 

represents the perfect model performance. 
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4.Results  
The results of all the experiments conducted in this 

study along with a comparison of results with the 

existing methods are provided in this section. 

4.1Performance of the proposed approach 

Different classification models including SVM, RF, 

DT, XGB, and NB were evaluated using the obtained 

feature set, to get the best classifier for the current 

task on the balanced ForgeDisaster dataset 

comprising 740 authentic and 740 forged (mixed set 

of copy-move and spliced) images. The LBP and 

DFT features were applied in two ways: (1) applying 

LBP before DFT (LBP-DFT) and (2) applying LBP 

after DFT (DFT-LBP). Table 2 reports the results of 

all experiments. Among all classifiers, SVM 

provided the best results using both LBP-DFT and 

DFT-LBP features. Notably, the proposed LBP-DFT 

feature arrangement along with SVM outperformed 

DFT-LBP feature arrangement with SVM in 

detection accuracy. The proposed method exhibited 

high accuracy of 0.91, sensitivity value of 0.95, and a 

specificity value of 0.89. Moreover, lowest FNR of 

0.05 and FPR of 0.11 was obtained. These metrics 

hold significant implications in disaster scenarios, 

where a failure to detect actual forgery can result in 

the spread of misinformation and rumors, 

exacerbating panic among affected populations and 

potentially diverting resources from actual areas of 

need. On the other hand, false positives can lead to 

the overlooking of genuinely affected areas, leading 

to delays in assistance and support to those in need. 

So, achieving a low FNR and FPR indicates a reliable 

detection approach. 

 

To further validate the effectiveness of the proposed 

approach, AUC-ROC analysis was performed. The 

AUC-ROC metric provides a comprehensive measure 

of the model's ability to discriminate between forged 

and authentic instances across different threshold 

settings. A higher mean AUC-ROC of 0.92 was 

obtained on ten folds as shown in Figure 11, which is 

good and validates the model‟s correctness.  

Furthermore, the CPU-processing time required for 

extracting features, training and prediction was 

measured. The process of extracting features from a 

single image required approximately 0.952 seconds. 

The training phase, which involved training the 

model with the features of images, lasted about 0.067 

seconds. Finally, the prediction process, where the 

trained model was used to predict authentic or forged 

image, took approximately 0.0001 seconds. 

 

Table 2 Results of the proposed method and different models 

Model name Accuracy Sensitivity Specificity FNR FPR 

LBP-DFT-RF 0.86 0.84 0.87 0.16 0.13 

LBP-DFT-DT 0.83 0.81 0.83 0.19 0.17 

LBP-DFT-XGB 0.83 0.79 0.87 0.21 0.13 

LBP-DFT-NB 0.60 0.39 0.81 0.61 0.19 

LBP-DFT-SVM (Proposed Method) 0.91 0.95 0.89 0.05 0.11 

DFT-LBP-RF 0.81 0.84 0.77 0.16 0.23 

DFT-LBP-DT 0.79 0.75 0.83 0.25 0.17 

DFT-LBP-XGB 0.80 0.80 0.80 0.20 0.20 

DFT-LBP-NB 0.72 0.61 0.83 0.39 0.17 

DFT-LBP-SVM 0.89 0.91 0.87 0.09 0.13 

 
4.1.1Performance of the proposed approach for each 

forgery type 

The proposed method was evaluated for copy-move 

and splicing forgery type individually. Each type was 

assessed individually to gain insights into the 

method's effectiveness across different manipulation 

scenarios. The results are reported in Table 3.  For 

the detection of copy-move forgery, a dataset 

comprising 171 copy-move images and 740 authentic 

images was formed, resulting in an imbalanced 

dataset. Similarly, for splicing detection, a dataset 

containing 569 spliced images and 740 authentic 

images was used.  The proposed method exhibited 

robust performance for both copy-move and splicing 

detection. For copy-move forgery, an accuracy of 

0.90, sensitivity of 0.93, and specificity of 0.87, with 

an FNR of 0.07 and FPR of 0.13 was achieved. This 

indicates that the proposed method accurately 

identifies 93% of copy-move manipulated images 

while maintaining a low rate of false negatives and 

false positives. Similarly, for splicing forgery 

detection, the proposed method achieved an accuracy 

of 0.92, sensitivity of 0.94, and specificity of 0.92, 

with an FNR of 0.06 and FPR of 0.08. The AUC-

ROC analysis further validated the robustness of the 

proposed method, with values of 0.90 and 0.93 

obtained for copy-move and splicing over ten folds, 

respectively as shown on the AUC-ROC graphs in 

Figure 12 (a) and (b). It can be observed that the 

proposed method performs well in detecting both 
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types of forgeries even with imbalanced samples. 

This shows the robustness of the proposed method 

across imbalanced samples and forgery types. 

 
Figure 11 AUC-ROC of the proposed approach over 10 folds 

 

Table 3 Results of the proposed method for each forgery type 

Metric/forgery type Copy-move Splicing 

Accuracy 0.90 0.92 

Sensitivity 0.93 0.94 

Specificity 0.87 0.92 

FNR 0.07 0.06 

FPR 0.13 0.08 

 
4.1.2 Ablation study 

In this section, analysis of ablation experiments is 

presented to thoroughly investigate the impact of pre-

processing steps and feature extraction on the 

proposed method. The pre-processing steps, 

specifically image enhancement filtering was 

excluded from the proposed approach to discern its 

effect. Figure 13 (a) presents the results of the 

proposed method with and without pre-processing. 

Without pre-processing, utilizing LBP with DFT 

achieved an accuracy of 88%. Conversely, when 

incorporating image enhancement filters with LBP 

and DFT achieved higher accuracy of 91%. It 

demonstrates that the pre-processing significantly 

improves the obtained results. Additionally, the 

performance of the proposed method is compared 

using Cr channel against utilizing Y and Cb channels, 

as depicted in Figure 13 (b). Notably, the 

experiments revealed that utilizing the Cr channel 

yields better results than the other channels. 

Moreover, the efficacy of feature extraction 

techniques was explored, examining the performance 

when employing LBP alone, DFT alone, and a 

combination of both. The results are illustrated in 

Figure 13 (c), showcasing that the proposed 

approach, which combines LBP and DFT features, 

outperformes the utilization of these features 

individually. Overall, through systematic ablation 

studies, the critical importance of pre-processing 

steps and the synergistic effects of feature 

combination is demonstrated, leading to superior 

performance. 
4.1.3 Error analysis 

This subsection delves into error analysis aimed at 

examining cases where the model's predictions 

diverge from the actual labels. Figure 14 displays 

instances of misclassified cases. It was observed that 

the proposed method tended to misclassify images, 
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where only a small region has been manipulated. For 

instance, Figure 14 (a), shows an image of an 

earthquake scene, the yellow circled region 

encompassing a distressed dog indicates a forged 

area. Similarly, Figure 14 (b), depicting a wildfire 

scenario, the yellow circled animal corpse indicates a 

forged area. The actual label of both the images is 

forged, however, the proposed method predicted 

them as authentic. This observation suggests that the 

proposed method may not accurately detect subtle 

alterations in the image, especially when they are 

localized to a small area and are blended well in the 

target image. The feature representation might not 

capture these nuanced differences between authentic 

and manipulated regions leading to misclassification 

of forged images as authentic. Additionally, in Figure 

14 (c) and (d), the actual label of the images is 

authentic, however, the proposed method predicted 

them as forged. The proposed method misclassified 

those images which have blurred background with 

sharp objects in the foreground, capturing clear 

difference between the sharp objects and the blurred 

background and detected the image as forged. The 

method‟s sensitivity to sharp edges and contrast 

between foreground and background elements 

resulted in erroneous classification of images. 

 

 
                                                                (a) 

 
                                                                (b) 

Figure 12 AUC-ROC of the proposed approach over 10 folds for (a) Copy-move forgery (b) Splicing forgery 
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(a)                                                         (b)                                                    (c) 

Figure 13 Comparison of accuracy of the proposed method (a) without and with pre-processing (b) with Y, Cb, and 

Cr channels, and (c) with LBP only, DFT only, and LBP combined with DFT 

 

   
(a)                                                                          (b) 

   
                     (c)                                                                         (d) 

Figure 14 Misclassified cases: (a) and (b) are forged images falsely predicted as authentic, (c) and (d) are authentic 

images falsely predicted as forged 
  

4.2Evaluating pre-trained deep learning models 

using the ForgeDisaster dataset 

The evaluation of various pre-trained CNN models 

on the ForgeDisaster dataset was conducted to assess 

their performance in detecting manipulated images. 

The models evaluated include InceptionV3, VGG16, 

EfficientNet, and ResNet50, which are widely 

recognized architectures in the field of computer 

vision. These models are pretrained on ImageNet 

dataset. Table 4 presents a comparative analysis of 

the performance metrics achieved by each model, 

with the proposed method's results highlighted for 

comparison. The highest accuracy, sensitivity, and 

specificity achieved by these deep learning models 

was 0.83, 0.91, and 0.84, respectively. While the 

lowest FNR and FPR achieved was 0.09 and 0.16, 

respectively. From the table, it can be observed that 

these deep learning models does not seem to provide 

improved performance and the proposed method 

consistently outperforms them across all the metrics. 
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Table 4 Results of the proposed method and pre-trained deep learning models 

Model Name Accuracy Sensitivity Specificity FNR FPR 

InceptionV3 0.81 0.78 0.84 0.22 0.16 

VGG16 0.83 0.88 0.78 0.12 0.22 

EfficientNet 0.81 0.91 0.72 0.09 0.28 

ResNet50 0.79 0.70 0.77 0.30 0.23 

Proposed Method 0.91 0.95 0.89 0.05 0.11 

 

4.3Comparative analysis 

As discussed in section 2.2, literature presented 

various methods for detecting splicing and copy-

move attacks. Researchers, including Alahmadi et al. 

[14], Islam et al. [37], Dua et al. [38], and Ali et al. 

[47], have evaluated these methods on mixed 

collections of both copy-move and splicing forged 

images, showcasing robust performance on general 

forgery datasets. Experiments were conducted with 

these methods on the ForgeDisaster dataset, 

composed of real-world SM disaster-related forged 

images. In this section, a comparative analysis of the 

proposed approach against these established methods 

for SM disaster image forgery detection is provided. 

Alahmadi et al. [14], presented a frequency-based 

method that combined LBP with DCT, reporting a 

high detection performance on general forgery 

datasets. On the ForgeDisaster dataset, they achieved 

an accuracy, sensitivity, and specificity of 86%. 

While Islam et al. [37], also utilized LBP and DCT, 

applying DCT first followed by computing LBP and 

applying a mean operation on the feature set, attained 

an accuracy score of 78%, with sensitivity of 82% 

and specificity of 73% on ForgeDisaster dataset. 

 

Dua et al. [38], applied DCT and computed STD and 

count of ones in DCT coefficients corresponding to 

each AC frequency component independently to 

capture the variation in statistical properties of AC 

coefficients of an entire image. When tested on 

ForgeDisaster, they obtained an accuracy of 85%, 

sensitivity of 88%, and specificity of 83%. Ali et al. 

[47] employed deep learning with ELA features for 

detecting copy-move and spliced images, achieved an 

accuracy, sensitivity, and specificity of 77%. 

 

The comparative performance of the proposed 

method against these referenced existing methods is 

illustrated in Figure 15. The results clearly indicate 

that the proposed approach consistently outperforms 

all the existing methods achieving an accuracy of 

91%, sensitivity of 95% and specificity of 89%. 

 

 
Figure 15 Comparison of results between the proposed method and existing methods 

 

Furthermore, when comparing the FNR and FPR of 

the proposed method with the existing methods, 

Alahmadi et al. [14] provided an FNR and FPR of 

14%, Islam et al. [37] provided 18% and 27% of 
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FNR and FPR, respectively, Dua et al.  [38] provided 

12% and 17% FNR and FPR, and Ali et al. [47] 

provided the highest FNR and FPR of 23%. Figure 

16 highlights the FNR and FPR comparison between 

the proposed method and the existing techniques. 

Notably, the proposed method demonstrated the 

lowest FNR of 5% and FPR of 11% compared to the 

other methods, indicating its capability to minimize 

the instances of incorrectly identifying authentic 

images as forged and forged images as authentic. 

 

 
Figure 16 FNR and FPR of the proposed method and existing methods 

 

5.Discussion 
Upon thorough evaluation, it was observed that SVM 

classifier exhibited the best results using the proposed 

LBP-DFT feature arrangement as compared to other 

classifiers and feature arrangement. The combination 

of LBP before DFT for feature extraction enhanced 

the discriminative power of STD-based features, 

making them more effective in detecting and 

highlighting subtle alterations introduced by 

tampering in images. By achieving high performance 

in terms of accuracy, specificity, sensitivity, and 

AUC-ROC, the proposed approach demonstrated 

superior efficacy, offering a promising solution for 

disaster authorities seeking credible information from 

SM platforms. Also, the low FNR and FPR produced 

by the method indicated its robustness in 

distinguishing between authentic and forged images. 

Moreover, the proposed approach exhibited 

robustness in handling both balanced and imbalanced 

datasets, as well as different types of forgeries 

including copy-move and splicing.  

 

Through ablation experiments, the importance of pre-

processing steps, such as image enhancement through 

NLM and bilateral filtering, is elucidated. NLM and 

bilateral filtering proved to be effective in reducing 

noise while preserving important image details, thus 

improving feature extraction from low-quality SM 

images. Also, experimenting with different color 

channels revealed that utilizing the Cr channel yields 

the best results. This shows that Chrominance 

channels do a better job than any other channel type 

for encoding tampering traces. These pre-processing 

steps not only mitigate the impact of noise and 

compression artifacts but also enable the extraction of 

relevant forgery indicators, thereby enhancing the 

overall effectiveness of the detection process. 

  

As per the ablation experimental results, the 

combination of LBP and DFT features proved to be 

particularly effective for SM disaster images. As 

discussed, LBP excels in capturing local texture 

patterns, and enhances tampering artifacts crucial for 

identifying subtle irregularities introduced by image 

manipulations. While DFT analyses the frequency 

content of images to capture the variations in the 

local frequency distributions which can reveal 

inconsistencies introduced by forgery. It provides a 

comprehensive representation of image features in 

the frequency domain, complementing the spatial 

information captured by LBP. By utilizing both LBP 

and DFT, the proposed approach captures a diverse 

FNR FPR
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range of features from SM images, including both 

texture and frequency characteristics. This 

comprehensive feature representation enhances the 

discriminative power of the detection system. 

 

The proposed approach stands out from existing 

forgery detection methods by specifically addressing 

the challenges associated with SM disaster images. 

Unlike existing methods, the proposed approach 

incorporated image enhancement filtering. By 

utilizing this pre-processing step, the low-quality SM 

disaster images are enhanced by reducing noise while 

preserving crucial image details. This enhancement 

significantly improves the clarity of key features in 

the images, thereby enhancing the accuracy of the 

analysis. Furthermore, the proposed approach utilizes 

a combination of LBP and DFT for extracting 

features. Even without pre-processing, this 

combination achieves an impressive accuracy as 

detailed in section 4.1.2. This underscores the 

robustness of the LBP and DFT combination in 

extracting features, making them particularly well-

suited for analyzing disaster images on Twitter SM 

platform. 

 

In summary, the combination of pre-processing 

techniques, robust feature extraction methods, and 

SVM classification collectively enhances the 

robustness of forgery detection for disaster images on 

the Twitter SM platform. 

 

5.1Limitations 

One notable limitation is that the proposed method is 

evaluated using a specific ForgeDisaster dataset 

which includes images from Twitter SM only. This 

may introduce bias and limit the generalizability of 

the findings to other SM platforms. Additionally, the 

error analysis revealed misclassifications, suggesting 

the need for further improvements. It is 

recommended to augment the training dataset with a 

diverse range of forged images that encompass 

various degrees of manipulation and visual 

complexity, may improve the method‟s ability to 

generalize across different scenarios. 

 

5.2Practical implications 

The proposed approach offers disaster response 

authorities a reliable method to verify the authenticity 

of SM images before using them in decision-making 

processes during disasters. By integrating the 

proposed methodology into their workflows, 

organizations can mitigate risks posed by forged 

content, enhancing the efficiency of rescue missions 

and optimizing resource allocation. Additionally, the 

availability of the ForgeDisaster dataset provides a 

valuable resource for researchers and practitioners, 

facilitating advancements in SM disaster forgery 

detection. Appendix I contains an exhaustive 

compilation of all abbreviations referenced 

throughout this paper for easy reference. 

 

6.Conclusion and future work 
The potential dissemination of manipulated or fake 

images can impede rescue missions, prolong recovery 

efforts, and even endanger lives. To address this 

critical issue, effective detection of forged SM 

disaster images is imperative. However, the post-

processing operations like compression commonly 

performed on SM platforms further complicate the 

detection process by introducing noise and degrading 

image quality, necessitating specific approaches. To 

this end, a new dataset ForgeDisaster was introduced 

in this study which consisted of authentic and forged 

images collected from Twitter SM related to various 

natural disasters that occurred worldwide. 

Additionally, a new passive approach was presented 

specific to SM disaster image forgery detection. The 

approach included pre-processing phase that 

enhanced the low image quality on SM by additional 

filters. Feature extraction phase that included LBP 

and DFT for extracting robust features and 

classification phase including SVM for classification. 

The combination of all three phases in the proposed 

approach collectively contributed to the effective 

detection of SM disaster image forgery detection, 

resulting an accuracy of 91% and demonstrating 

superior efficacy compared to existing approaches. 

Thus, it presented a promising solution for disaster 

authorities seeking credible information from SM 

platforms during disasters. 

 

Moreover, while the proposed dataset was utilized to 

evaluate various pre-trained deep learning 

architectures, the obtained results did not exhibit 

significant improvements. However, the obtained 

results can be used as a baseline for future deep 

learning solutions. This observation suggests that 

while deep learning models offer the potential for 

automatic feature learning, the basic models 

employed in this study may not be sufficiently 

advanced to address the complexities of forgery 

detection. A logical step to enhance detection 

performance could involve augmenting the dataset. 

Augmentation would enable the training of more 

advanced deep learning models, which is crucial 

given that these models often struggle with limited 

data availability. In addition to this, future research 

should consider expanding the dataset to encompass 



Saima Saleem et al. 

572 

 

images from a broader spectrum of SM platforms. 

This expansion would ensure the robustness and 

applicability of the proposed approach across diverse 

SM environments. To further enhance the proposed 

forgery detection method, it's imperative to 

incorporate forgery localization techniques. This 

addition would provide finer-grained insights into the 

specific regions of an image affected by tampering, 

thereby improving the overall accuracy and efficacy 

of the proposed approach.  Furthermore, in the 

current study, the assessment of the credibility of SM 

disaster images is limited to copy-move and splicing 

forgeries. However, it's noteworthy that in 

contemporary times, there is a rising trend in 

circulating AI-generated fake images or the 

proliferation of deepfakes during disasters on SM. 

Hence, future research efforts could extend to 

encompass the detection of such AI-generated fake 

images or deepfakes in disaster contexts.   
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Appendix I 
S. No. Abbreviation Description 

1  2D 2-Dimensional 

2 
AUC-ROC 

Area Under the Curve of Receiver 
Operating Characteristic Curve 

3 CNN Convolutional Neural Network 

4 DT Decision Tree  

5 DC Direct Component 

6 DCT Discrete Cosine Transform 

7 DFT Discrete Fourier Transform 

8 DWT Discrete Wavelet Transform 

9 ELA Error Level Analysis 

10 XGB eXtreme Gradient Boosting  

11 FNR False Negative Rate  

12 FPR False Positive Rate  

13 FFT Fast Fourier Transform 

14 GOV Government 

15 LBP Local Binary Pattern 

16 NB Naïve Bayes  

17 NGO Non-Government Organization 

18 NLM Non-Local Means  

19 RF Random Forest  

20 RGB Red Green Blue 

21 SM Social Media 

22 STD Standard Deviation 

23 SVM Support Vector Machine 

24 VGG Visual Geometry Group 
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