
International Journal of Advanced Technology and Engineering Exploration, Vol 11(113)

ISSN (Print): 2394-5443 ISSN (Online): 2394-7454

http://dx.doi.org/10.19101/IJATEE.2023.10101890

604

Optimizing software fault prediction using decision tree regression and soft

computing techniques

Gurmeet Kaur
1*

, Jyoti Pruthi
2
 and Parul Gandhi

2

Research Scholar, Manav Rachna University, Faridabad, Haryana, India
1

Professor, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
2

Received: 26-June-2023; Revised: 22-April-2024; Accepted: 26-April-2024

©2024 Gurmeet Kaur et al. This is an open access article distributed under the Creative Commons Attribution (CC BY) License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1.Introduction
Soft computing techniques have become

indispensable resources for addressing optimization

and prediction problems in various computing

applications [1]. These approaches provide practical,

flexible, and accurate solutions designed specifically

to deal with the complexity that arises in real-world

situations. These techniques are excellent at handling

probabilistic or uncertain data, offering the best

answer to a variety of issues in several fields,

including biogenetic informatics, telecommunication

networks, and computers [1].

*Author for correspondence

Early detection and prediction of software defects

have enormous potential to improve the productivity

and dependability of the software development

process [2]. Through proactive fault detection and

resolution across the software development life cycle

(SDLC), organizations can save a considerable

amount of computation time, cut expenses, and better

manage resource allocation [2]. Software defects,

which can range from defects to failures, not only

prevent programs from functioning as intended but

also result in significant time and cost savings if they

are not fixed [2].

Research Article

Abstract
This research aims to develop a framework for software fault prediction (SFP) using machine learning techniques. A

software fault may be the reason behind the failure of software functioning, and even a minor fault could cause the

failure. Efficient SFP improves the overall quality and performance of the software products while streamlining the

development process. The framework aims to reduce the cost and time involved in software development while optimizing

the reliability of the software. It facilitates quick and efficient testing by identifying the modules that are likely to fail at

the early stages of the project. Soft computing techniques provide an easy and effective solution for prediction problems.

This study emphasizes the significance of soft computing approaches in SFP and highlights their role in improving

computational efficiency, reducing development costs, and enhancing the reliability of software applications. Soft

computing-based technique was proposed to address the prediction challenges. A metric suite was suggested, which

includes a requirement-based metric and an adoption metric, designed by integrating process metrics of software

development phases for fault prediction. It also designs decision tree regression (DTR)-based SFP model that uses these

metrics as input and delivers predicted faults as output. The literature review reveals that only a few existing frameworks

meet the requirement of implementing SFP models using a broad range of soft computing approaches for the same

dataset. The suggested metric suite is validated by computing performance measures such as the area under curve (AUC),

F-measure, precision, recall, and accuracy. The high-performance values of the suggested metric suite demonstrate its

efficient fault prediction capability. The study also compares the performance of the suggested model with other adaptive

neuro fuzzy inference systems (ANFIS), fuzzy-inference systems, and Bayesian-net-based SFP models, measured by root

mean square error (RMSE), normalized root mean square error (NRMSE), the mean magnitude of relative error

(MMRE), the balanced mean magnitude of relative error (BMMRE), and R-Squared. The suggested model outperforms

others, achieving RMSE, MMRE, and R-Squared values of 3.54, 2.04 e-05, and 99.78, respectively. This study presents a

highly efficient DTR based SFP model with more fault prediction accuracy than the existing SFP models.

Implementation of this model is to significantly reduce costs and improve the time and effort of software development,

making it an invaluable tool for software engineers.

Keywords
Software fault prediction, Predicted-fault, Process metrics, Soft-computing, Decision tree regression, Machine learning.

International Journal of Advanced Technology and Engineering Exploration, Vol 11(113)

605

Efficient software fault prediction (SFP) improves

the overall quality and performance of software

products while streamlining the development process.

Developers can reduce the likelihood of software

failures and improve user satisfaction by anticipating

and mitigating possible issues before they escalate by

applying soft computing-based approaches like

machine learning, neural networks, and fuzzy

inference systems (FIS).

This study emphasizes the significance of soft

computing approaches in SFP and highlights their

role in improving computational efficiency, reducing

development costs, and enhancing the reliability of

software applications. It focuses the significance of

proactive fault detection in optimizing the SDLC. It

also aims to deliver high-quality software products by

examining various soft computing techniques and

their applications in fault prediction.

Software system errors are a key concern, and

software quality assurance and reliability are crucial

to ensure that the program is of excellent quality.

Regarding software and its measures, two critical

concepts have gained attention from experts. It is a

commonly known fact that tasks such as time

estimation, practical testing, financial planning, and

measurement forecasts ensure quality standards [2].

A software bug is a fault, error, failure, or flaw that

occurs during the execution of a software program,

which prevents it from giving accurate results [2]. A

software fault may be the reason behind the failure of

software functioning, and even a minor fault could

cause the failure [2]. Software failure refers to the

unpredictable results that might arise from external

factors and state variables that induce defaults when a

utility program is running. If these issues are detected

at the early stages of product development, time and

worth can be consistently and considerably reduced

[3].

It is advisable to use an SFP during software

development and apply interaction activities to help

anticipate defective modules at the initial phases of

software development. Predicting the defective

modules in the beginning makes testing easy and

quick. Present-day development also raises the

requirements for programming standards. Defective

software modules cause failures, reduced customer

satisfaction, and increased maintenance expenses.

The goal of constructing SFP models is to provide

sufficient initial assessments of the quality of

developing software projects by utilizing courses of

action that can be applied right on time for the project

life cycle.

Designing SFP models seeks to apply metrics often

acquired during the project life cycle to provide

sufficient early assessments of software reliability.

Additionally, measurements may apply to product

development, internal control, programming

evaluations, and process creation and verification.

Cyclomatic complexity metric (CCM), line of codes

(LOC), and Halstead complexity metric (HCM) can

be used to analyze the product's complexity. Defect

density is a product reliability metric that assesses the

defect per kilo LOC or defect per function point.

Defect removal efficiency is one of the significant

calculations in a programming standard. Class-level

metrics were proposed by Chidamber and Kemerer

(CK) in 1994 and continue to be used today by a

community of experts and software developers [4].

These can be applied in object-oriented

programming. These metrics include weighted

methods per class (WMC), depth of inheritance tree

(DIT), Coupling in between object classes (CBO),

response for class (RFC), number of children (NOC),

and lack of cohesion of methods (LCOM) [4].

Process metrics are a set of measurements based on

data gathered throughout the SDLC. Process metrics

include code deltas, churn measures, requirement

metrics, and change metrics [4].

SFP intends to predict defect-prone programming

modules by using some attributes of the software

project. It applies to a known project by preparing an

expectation model using project properties or

attributes supported by defect data and progressively

applying the forecast model to foresee shortcomings

for uncertain tasks. The fault prediction model of

software has three significant parts, which are.

 SFP methods or features,

 Software fault datasets, and

 Evolution measures of the prediction result

A set of measures based on the data gathered during

the first forecast of different programming metrics

(such as cyclomatic complexity, LOC, etc.) may be

used as an independent parameter. As a result, the

required fault predicted (such as the measure of

faults, both broken and flawed) functions as a

dependent parameter. The software fault information

is found in the source code file changed logs and

other project files containing information about the

execution of the software project. The fault datasets

are those where the faulty data is found later in the

SDLC. Finally, the performance of the constructed

Gurmeet Kaur et al.

606

fault forecast model is measured using different

execution assessment measurements such as review,

exactness, precision, and accuracy.

Soft computing is a collection of computational

techniques that provide simple and efficient solutions

to prediction-related issues [1]. The primary

categories of soft computing techniques include

fuzzy computing, neural networks, machine learning,

Bayesian nets, evolutionary computing, and others

[1].

However, there are still some research challenges in

fault prediction. Fault prediction relies heavily on

code-related metrics, but there is a need to identify

and prioritize other metrics and integrate them to

serve as early indicators of potential faults.

It has been noted from the past study that there are

very few SFP models developed using customized

metrics. Existing models for fault prediction may

base on traditional metrics. An optimal combination

of process metrics for fault prediction may result in

high accuracy in early detection capabilities. The

proposed research, therefore, aims to develop a soft

computing model incorporating a machine learning

approach for SFP using a suggested metric suite.

Nowadays, the prediction problem centers on

machine learning methods, and the SFP model affects

several phases of software engineering that improve

cost, time to completion, and reliability. The

objectives of this study include the following steps:

 To study and compare the existing fault prediction

techniques.

 To identify, design, and validate a customized

metric suite at an early stage of software

development.

 To apply the suggested metric suite as input to

develop a new SFP model using soft-computing

techniques.

 To validate the suggested model using a larger

dataset and compare it with the existing SFP

models.

The principal advantage of the proposed decision tree

regression (DTR)-based SFP model lays in its

exceptional accuracy for fault prediction. This

accuracy is expected to substantially decrease

development costs and enhance efficiency in

software development processes.

To achieve the research objectives, specific research

questions (RQs) have been formulated that are

addressed throughout the paper.

RQ1: How is it proved that the literature study has

compared soft computing-based fault prediction

techniques for the common component?

RQ2: How is it proved that the suggested metric

suite (Mr and Ma) efficiently predicts faults?

RQ3: How is the validity of the suggested DTR-

based model demonstrated?

The organization of the research paper is as follows:

section 2 includes the latest view of the literature on

SFP models based on various soft computing

techniques and a meta-analysis of the literature.

Section 3 describes the design of the suggested

metric suite derived by integrating process metrics of

phases of the SDLC as inputs and implementing the

DTR-based SFP model that accepts the suggested

metric suite as inputs (independent variables) and

delivers predicted-faults as outputs (a dependent

variable). Section 4 describes the prediction and

validation outcomes of the suggested metric suite and

SFP model and compares them with existing SFPs

using soft-computing approaches. Section 5 presents

a detailed discussion of the outcomes computed from

the suggested metric suite and model for SFP and

their validity, as stated in the research objectives. It

has been concluded in section 6.

2.Related study
The importance of SFP lies in its ability to identify

defective items in software modules before

deployment, thereby reducing development costs and

time and improving the quality of software packages.

Soft computing provides a simple and efficient way

to solve prediction problems, making it an ideal

approach for SFP. Table 1 provides a detailed

description of the literature survey conducted about

SFP, highlighting the various soft-computing

methodologies in this area.

Table 1 Relevant literature analysis

Ref. No. Citation Objective Methodology used Advantages/Limitations

[5]

Liu et al.

(2023)

To overcome problems

with imbalanced data

categorization.

Twin support vector

machines (SVM) and

clustering

The experimental results demonstrate that the

proposed method outperforms existing

algorithms in terms of prediction accuracy,

robustness, and optimised performance when

classifying unbalanced data.

International Journal of Advanced Technology and Engineering Exploration, Vol 11(113)

607

Ref. No. Citation Objective Methodology used Advantages/Limitations

[6] Azzeh et al.

(2023)

Introduced a novel

prediction model to

address the imprecision in

software measurement that

combines fuzzy logic with

grey system theory.

Fuzzy logic and gray

relational analysis

Furthermore, a sensitivity analysis approach

was used to assess the suggested model

against various levels of uncertainty. The

results demonstrated that the model acts

consistently under varying levels of

uncertainty.

[7] Batool and

Khan (2023)

Deep learning (DL)

techniques were used to

forecast software flaws

and compare the outcomes

with pre-existing models.

CK metrics-based datasets

for long short-term memory

(LSTM), bidirectional

LSTM (BILSTM), and

radial basis function

network (RBFN)

It has been determined that, in comparison to

LSTM and BILSTM, RBFN produces the

necessary results more quickly. The

suggested model offered a more precise and

effective SFP approach and evaluated the

model through k-fold cross validation (CV).

[8] Borandag

(2023)

A DL based SFP model

was suggested in the

extreme programming

(XP) work environment to

manage the projects

efficiently by monitoring

the development progress

and status of the observed

faults.

Incorporated five distinct

base classifiers and their RF

ensembles from Apache

active dataset, extreme

programming-test driven

development (XP-

TDD), eclipse and JIRA,

and the classifiers

ultimately

Applied a DL neural network, which was

made up of convolution neural network

(CNN) and the LSTM and BILSTM

algorithms. It was determined that using a

multi-layered recurrent neural network

(RNN) based DL model for fault prediction

produced positive results.

[9] Thirumoorthy

(2022)

The fault prediction

probability and the feature

selection (FS) frequency

are used in the suggested

work to evaluate the

candidate solution's

fitness.

Multi-criteria decision

making (MCDM) and Rao

optimization techniques are

the foundations of the

hybrid FS (filter–wrapper)

approach.

There are three widely used benchmark

NASA datasets: PC5, JM1, and KC1. The

most significant feature subset for fault

prediction with an average accuracy on the

benchmark datasets has been used to evaluate

the efficacy of the proposed method.

[10] Goyal (2022) SFP models applying the

FS - evolving populations

with mathematical

diversification (FS-

EPwMD) technique.

Using mathematical

diversity for genetic

evolution, a unique FS

technique is developed.

While input five different classification

algorithms—decision tree (DT), K nearest

neighbor (KNN), SVM, artificial neural

network (ANN) and naive bayes (NB). ANN

significantly beat all other SFP models.

[11] Daoud et al.

(2021)

ANNs are among the most

popular machine-learning

methods for identifying

software components that

are prone to defects.

NASA information and a

cloud-based architecture

were utilized to anticipate

software defects in real
time.

Scaled conjugate gradient, Levenberg-

Marquardt, Broyden-Fletcher-Goldfarb-

Shanno quasi-Newton, and applied Bayesian

regularization (BR). It was discovered that

out of all the training functions, the BR

performed better.

[12] Farid et al.

(2021)

Suggested a hybrid model

that predicts the

problematic parts of

source code.

CNN with Bi-LSTM

applied to PROMISE

datasets

The results showed that the hybrid model of

convolution neural network (CBIL) model

outperforms CNN in terms of average f-

measure and RNN in terms of area under

curve (AUC), with improvements of 25%

and 18%, respectively.

[13] Zain et

al.(2021)

Introduced a unique 1-

dimensional convolutional

neural network (1D-CNN)

architecture that makes

use of DL.

Used CNN on NASA

datasets along with four

baseline classification

models DT, SVM, and

random forest (RF).

The outcomes showed that an optimal and

modest 1D-CNN with a dropout layer beats

baseline and state-of-the-art models by

66.79% and 23.88%, respectively, in terms of

f-measure.

[14] Hassouneh et

al. (2021)

Suggested novel wrapper

algorithms (WOA)

variants as to address the

problems associated with

feature (metric) selection

in SFP applications.

Roulette wheel, stochastic

universal sampling, random

basis, linear position, and

process metric.

The author employed 17 publicly available

SFP datasets to calculate AUC and running

time, and found that the proposed tournament

approach outperformed the primary WOA.

[15] Sharma and FIS was developed to Hybrid neuro-fuzzy method The suggested structure offers enhanced

Gurmeet Kaur et al.

608

Ref. No. Citation Objective Methodology used Advantages/Limitations

Sangal (2020)

assess how well various

measures predict problems

in agile software projects.

andProcess metric precision, mean magnitude of relative error

(MMRE), balanced mean magnitude of

relative error (BMMRE), root mean square

error (RMSE), and normalized root mean

square error (NRMSE), particularly for

projects involving datasets from the

PROMISE repository that have a size of 50

kilo line of code (KLOC) or more.

[16] Tumar et al.

(2020)

Developed a precise

framework to foresee

programming flaws and

supported the FS

algorithm in solving

classification problems.

Used KNN, linear

discriminant analysis

(LDA), and DT as three

distinct classifiers.

The unbalanced data issue is solved via FS

using binary moth fire optimization (BMFO)

feature selection, which both improve the

data set and compute the average AUC.

[17] Juneja (2019)

Devised a technique to

identify product defects

utilising inter-version and

inter-project assessment.

Using fuzzy logic as a

basis. Metric for products

and processes

The recommended method yielded very good

results for computing AUC and geometric

mean (GM) as well as RMSE for eclipse-

java development tools (JDT) and eclipse E

plug-in development environment (PDE)

based projects.

[18] Turabieh et

al.(2019)

To employ several feature

selection (FS) strategies to

handle a layered recurrent

neural organization (L-

RNN) and choose

important programming

measurements.

The terms binary ant colony

optimization (BACO),

binary genetic algorithm

(BGA), and bound particle

swarm optimization

(BPSO) are interchangeable

and process metrics.

Building a strong classifier using 19 actual

projects taken from the PROMISE store and

computed AUC as opposed to using a preset

feature layout.

[19] Bilgaiyan et

al. (2019)

Performed a near-

investigation of the

expected for various ANN

types.

Highlighted the Elman

neural network and the

ANN-feed forward back-

propagation neural network

as two types of neural

networks. Products and

Processes Measure

For data sets from 21 agile-based projects,

the feed forward back-propagation neural

network exhibits high algorithm speed, fixed

algorithm time, and adaptability to non-

critical failures according to Elman

organisation.

[20] Chatterjee

and Maji

(2018)

To determine a goal

evaluation of the

programming lifecycle's

early vulnerabilities and to

project the overall number

of errors

Interval type-2 fuzzy

reasoning

As a result of non-parametric and non-linear

nature of ANN, the suggested model has

consolidated ANN, to complete number of

defects which help in affirming better

expectation and to recognize the association

among inputs sources.

[21] Kalaivani and

Beena (2018)

An analysis concentrated

on the methods used to

introduce the quantity of

defects, quantity of

alterations, and quantity of

newly amended lines.

Object-oriented metrics The researchers reported that system metrics

were frequent and efficient addition to

forecast modules that usually encouraged

prediction methods.

[22] Arshad et al.

(2018)

Deep Fuzzy C-Mean

clustering (DFCM) uses

feature compression and

semi-supervised DFCM to

enhance the quality of the

software dataset with

imbalanced classes.

Using attribute compression

techniques, stochastic under

sampling, and semi-

supervised DFCM.

An actual software project dataset from

eclipse and NASA was used in order to

assess the effectiveness of the approach. f-

measure and AUC were used to assess the

performance of this dataset relative to other

more recent classical baseline methods.

[23] Geng (2018) Demonstrated a tendency Process metric, BAPS The innovation in dimensionality reduction

International Journal of Advanced Technology and Engineering Exploration, Vol 11(113)

609

Ref. No. Citation Objective Methodology used Advantages/Limitations

 to reduce programming

maintenance costs by

foreseeing product defect

proneness in soft modules.

(bound particle swarm

optimisation), and deep

neural network (DDN)

forecasting

based on BPSO can improve the execution of

real-world projects (such as NASA and

eclipse) and strengthen organisational

structure. It also computes the probability of

detection (PD), AUC, and f-measure.

[24] Singh (2017)

The creation of a model

using data from a similar

category to forecast an

error in a different project

falls under this category.

Using rules to help with

learning Decision tables,

NNge, OneR, Ridor, C4.5,

JRip, classification and

regression tree (CART),

Conjunctive Rule, NB,

hybrid classifier decision

table naive bayes(DTNB),

etc.

In terms of average AUC performance for

cases inside projects, C 4.5 has done better.

With results of 69%, DTNB outperformed

the other rule-based learner when results

from multiple projects were compared.

[25] Dhanajayan

and

Pillai (2016)

The effective prediction

and classification of

software faults using

Bayesian approaches

Bayesian classification Using a strong similarity aware clustering

algorithm based on the dataset's feature

similarity measure and the suggested

technique's computed accuracy, precious

recall, f-measures, and PD.

[26] Chatterjee

and Maji

(2016)

To estimate software

flaws using a fuzzy rule-

based system in the early

stages of development.

Used the linguistic values

of software metrics of the

requirement analysis

Phase

.A fuzzy rule-based strategy was suggested

that took into account the size of the

programme as well as the weighting of each

input software statistic.

[27] Yadav and

Yadav (2015)

Design a multistage fault

prediction model

FIS and process metrics By applying the fuzzy inference tool from

Matlab, the author created a model for each

software development step. Using a

PROMISE dataset, the author obtained

results in the form of a defect density value

for each stage.

[28] He et al.

(2015)

A research project into

software defect prediction

using a condensed set of

metrics

Process metrics The study portrayed the process of metric

selection was performed through a well-

qualified assessment

[29] Monden et al.

(2013)

Examining the

effectiveness of methods

for dividing up test effort

according to fault

prediction using a

simulation model.

Simulation model

Only when the proper test approach was used

and high fault prediction accuracy was a

reduction in testing effort realised. A set of

modules to be tested, as well as the resource

allocation approach and appropriate test

strategy.

[30] Pandey et al.

(2013)

Implement a multistage

failure prediction model.

FIS and

process metrics

At the conclusion of each stage of the SDLC,

the output of the model is obtained as a

measurement of fault density. The author

developed a fuzzy logic model and

implemented it in Matlab using data from

PROMISE.

[31] Hall et al.

(2012)

Described a quantitative

model to examine how

measurements are

presented in their raw

form.

The author employed open

source software (OSS)

projects and the NASA and

PROMISE data sets.

Various studies were conducted utilising

OSS projects to examine the capabilities of

product measures for programming defect

expectation.

[32] Jin et al.

(2012)

Using solely software

metrics, the approach

finds software modules

that are prone to errors.

ANNs and SVMs They first employed ANNs to eliminate

inferior qualities before utilising the SVM to

forecast fault-proneness with the features

they had chosen. In ANN, the selection of the

hidden neuron group is carried out

Gurmeet Kaur et al.

610

Ref. No. Citation Objective Methodology used Advantages/Limitations

automatically.

[33] Bishnu and

Bhattacherjee

(2012)

Design a SFP model using

quad tree-based k-means

clustering algorithm.

Quad tree-based k-means

clustering, logistic

regression (LR) technique

and NB algorithm

The findings indicate that the quality of

machine learning methodology needs to be

improved.

[34] Arisholm et

al. (2010)

In order to create

forecasting models and

discover Java system

components with a high

defect probability for

fault-proneness, compare

various data mining and

machine learning

techniques.

Object oriented metrics has

been suggested

Examine numerous approaches for

evaluating the models' performance in terms

of (i) the suggested cost-effectiveness

measure (CE), receiver operating

characteristic (ROC) area, accuracy and

precision/recall, and confusion matrix.

[35] Catal and Diri

(2009)

To research the effects of

FS methods, metrics, and

dataset size on the

challenge of predicting

software faults.

RF algorithms developed

using the new artificial

immune systems approach

to computational

intelligence

According to their research, RF outperforms

NB as a prediction algorithm for large

datasets and is the top option for small

datasets.

[36] Turhan and

Bener (2009)

Used software fault data to

assess the veracity of the

NB assumptions, namely

attribute independence and

equality in importance.

NB algorithm

It has been demonstrated that the

independence assumption of the NB

algorithm does not negatively impact

primary component analysis (PCA) pre-

processing. They employed PD, probability

of false alarm (PF), and balancing methods in

their investigation.

[37] Fenton et al.

(2008)

Design a multistage fault

prediction model

Bayesians Net and

process metrics

The values of output variables are computed

using a probability distribution, either

conditionally or unconditionally, for the node

and variables on dataset from PROMISE.

Also computed performance measure.

[38] Khoshgoftaar

and Seliya

(2007)

Presented a fresh approach

to evaluating software

quality in the absence of

defect information or

classifications of

programme modules based

on their quality.

K-means clustering

The expanding dataset increases the number

of clusters and iterations, and this study lacks

a clear-cut expert decision-making

mechanism. As a result, the expert will need

to dedicate a significant amount of time to

this technique.

[39] Koru and Liu

(2005)

LOC was used as a

predictor, and a set of

static measurements were

used.

J48 and KStar algorithms The machine learning methods used by the

WEKA are neither inspiring nor depressing.

The f-measure was used to assess

performance on publicly available NASA

datasets, and metrics at the method and class

levels were looked at.

[40] Wang et al.

(2004)

To accomplish their aim

of improving the

understand ability of high-

quality prediction models

based on neural networks,

they employed the

clustering genetic

algorithm (CGA).

Applied ANNs When utilising neural networks for

prediction, the accuracy of the predictions is

higher than when using the CGA rule set.

[41] Briand et al.

(1998)

Coupling and cohesion

estimation

Examining the unique

statistics, PCA, univariate

regression, and related to

measure in relation to the

defect data.

The author lists a number of

recommendations, including the following:

method innovation should be given strong

emphasis because it has been shown to be

important for solid coupling and a steady

pointer of defect tracing.

International Journal of Advanced Technology and Engineering Exploration, Vol 11(113)

611

In addition to these studies, there are some other

studies [4244] which are related to the literature

discussed.

2.1RQ1. How will it be proved that the literature

study compared the various soft computing-

based fault prediction techniques for finding a

common dataset?
A method used for combining and analyzing data

from multiple primary studies is called meta-analysis

[45]. Using several data sets, data pre-processing,

evaluation systems, and performance statistics makes

it challenging to make sense of the many prediction

findings [4649].In addition, no single prediction

approach prevails [46].These variations are

highlighted even more by the absence of standard

reporting procedures [5055]. Because of this,

deciding which fault prediction methodologies to

apply and evaluating their chances of success can be

challenging for experts and, more importantly,

practitioners.

The meta-analysis aims to produce an overall

perspective on fault prediction methodologies to

address these concerns and provide insight into the

most effective approaches. The different parameters

that affect the results of the prediction of faults are:

1. The methodology or techniques used to construct

and evaluate the prediction model;

2. The features or measures employed as input;

3. The metrics used to evaluate prediction

performance;

4. The datasets used to validate prediction

performance.

2.2Interpretation of RQ1

Our objective was to select, as thoroughly as

possible, significant studies that have performed

empirical evaluations of SFP models; additionally,

these studies indicate a positive control (i.e., defect-

or not-defect-prone). The focus of the meta-analysis

is to select the studies from the list of publications

that satisfied the criteria of using the same dataset in

their proposed work. These studies included the same

dataset from the PROMISE repository. These studies

served as the basis of the meta-analysis and are

mentioned in Table 2.

Table 2 Meta-analysis on the basis of Dataset

Ref. No. Learning technique Input variable Performance measures

[15] Bayesian Net Process metric MMRE, BMMRE, MdMRE, R-Squared

[27] FIS Process metric MSE, RMSE, MPE, MAPE

[30] FIS Process metric MMRE, BMMRE

[37] ANFIS Process metric MMRE, BMMRE, RMSE, NRMSE, R-Squared

Where RMSE: root mean square error, NRMSE:

normalized root mean square error, MMRE: mean

magnitude of relative error, BMMRE: balanced mean

magnitude of relative error, MdMRE: median

magnitude of relative error, MAPE: mean average

precision, MPE: mean percentage error.

The research includes a variety of soft computing-

based failure prediction models or frameworks that

utilize process or product metrics. The results of the

meta-analysis of the literature study indicated a

comparison of existing SFP models based on soft

computing approaches (Bayesian net, FIS, and

ANFIS) for the similar dataset produced by Fenton

[37], Panday [30], Yadav [27], and Sharma [15].

Hence, it can be concluded that the literature study

compared the soft computing-based fault prediction

techniques for a similar dataset as a common

component (Dataset). The literature review found that

existing SFP models used traditional metrics, and few

known models implemented customized metrics. To

improve the chances of achieving accurate results in

fault prediction, it is essential to incorporate soft

computing techniques based on machine learning. An

optimal combination of process metrics for fault

prediction may result in high accuracy in early

detection capabilities.

3.Methods
This section outlines the design of the suggested

metric suites and the implementation of the DTR-

based SFP model. The methodology for fault

prediction is given in Figure 1. The model accepted

the suggested metric suite as inputs - independent

variables - and delivered predicted faults as outputs -

a dependent variable.

3.1Suggested metric suite design

Requirement-based metric (Mr) and adoption metric

(Ma) were formulated in this section. Process

measurements were taken as inputs into the design of

Mrand Ma. Appendix II shows a subset of a larger

real-time dataset from PROMISE repository.

Gurmeet Kaur et al.

612

It is a group of variables for every software project,

which were further classified into requirements,

testing, coding phase metrics, and faults. There are

two types of parameters or variables: dependent and

independent. For fault prediction, the following

variables were considered independent or input:

requirements complexity (RC), requirements stability

(RS), review, inspection and walkthrough (RIW),

design team experience (DTE), process maturity

(PM), coding team experience (CTE), defined

process followed (DPF), testing team experience

(TTE), and stake-holders involvement (SI).

Figure 1 Methodology of the suggested framework

for fault prediction

The dependent variable was the response or

output/target variable which represents the effect of

independent variables on the present dataset. Fault

was considered a dependent or target variable.
3.1.1Requirement-based metric (Mr)

In the design of Mr, an optimum combination of

requirement phase process metrics (such as RC, RS,

and RIW) was used, where RC is directly linked to

the faults and RIW and RS have an inverse

relationship to the faults. Equation 2 provides the

requirement-based metric Mrfor i = 1...N software

projects using Equation 1. The Mr inspired

requirement-based measure illustrated the

relationship between the requirement phase metrics

(RC, RS, and RIW).

Mr (i) = 2 ×RCr(i) / (RSr(i) + RIWr(i)) (1)

Mr(i) ={

 (2)

3.1.2Adoption metric (Ma)

For the larger dataset, a different metric based on the

process metrics of the SDLC, specifically the design,

coding, and testing phases, was proposed. The

independent variables in this metric were DTE, PM,

CTE, DPF, TTE, and SI; which are inversely related

to faults. In this case, all of the independent variables

were included in the same location at the same time

and were related to the dependent variables in the

same way. This metric was termed an "adoption

metric," or Ma, and is represented in Equation 4

which has used in Equation 3 for software projects

with i =1. N.

ma(i)=(DTE(i)+PM(i)+DPF(i)+CTE(i)+SI(i)+TTE(i))

/6 (3)

Ma (i) ={

 (4)

Table 3 presents the results of implementing Mr and

Ma's Python source code for a subset of 20 software

projects from a dataset of PROMISE.

3.2Suggested model

Numerous realistic, precise, and dynamic theories

have existed to handle the complexity of real-world

problems based on soft computing techniques. The

suggested fault prediction model was designed using

supervised learning's DTR computation.
3.2.1DTR computing-based SFP model:

To predict faults in software projects, DTR was

applied, because the relationship between

independent variables and dependent variable is

nonlinear. To handle the prediction from nonlinear

data, the regression or DT is used. Implicit criteria

that apply to both linear and non-linear connections

between independent and dependent parameters were

used in the design of the DTR algorithm [52]. The

suggested model included the pseudo-code for DTR

and explained how the algorithm worked to generate

regression trees for each project.

1. The entire data used for the training sample was

the root node.

2. The value of the independent variables was

selected to be exact.

3. Recursively assigning of the documentation was

performed using values of independent variables.

4. The DT center node, or root, was determined by

addressing the analytical technique. It determined

the order in which independent variables were

added.

In the development of the SFP model, a regression-

based tree was created for each project, with the

predicted-faults of each project considered as the

target or dependent parameters, while the suggested

metric suite of Mr and Ma was applied as an

independent parameter. Each regression tree received

Identification and designing of metric suite for the fault prediction

Implementation of the suggested fault prediction model using
decision tree regression by applying suggested metric suite as

inputs

Validation of the suggested metric suite

Testing and validation of the suggested DTR-based fault
prediction model using wider dataset and their comparision with

existing SFP models

International Journal of Advanced Technology and Engineering Exploration, Vol 11(113)

613

the values of Mr and Ma as input, and the output was

the predicted-faults. Figure 2 describes the

functioning of the DTR-based SFP model.

Table 3 Implementation results of the Mr and Ma
Pr. no. RC RS RIW Mr DTE PM CTE DPF TTE SI Ma

1 0.63 0.63 0.92 0.812903 0.63 0.92 0.86 0.75 0.63 0.86 0.775

2 0.63 0.34 0.75 0.99 0.15 0.75 0.34 0.75 0.34 0.34 0.445

3 0.15 0.34 0.92 0.238095 0.34 0.75 0.86 0.75 0.34 0.86 0.65

4 0.34 0.63 0.75 0.492754 0.63 0.5 0.63 0.5 0.34 0.63 0.538333

5 0.34 0.63 0.75 0.492754 0.63 0.75 0.63 0.75 0.34 0.63 0.621667

6 0.63 0.63 0.75 0.913043 0.63 0.75 0.63 0.5 0.63 0.63 0.628333

7 0.63 0.15 0.75 0.99 0.86 0.75 0.34 0.5 0.63 0.63 0.618333

8 0.63 0.15 0.5 0.99 0.63 0.75 0.63 0.75 0.34 0.63 0.621667

9 0.86 0.63 0.75 0.099 0.63 0.75 0.63 0.75 0.63 0.63 0.67

10 0.63 0.05 0.75 0.99 0.63 0.75 0.63 0.75 0.63 0.86 0.708333

11 0.05 0.34 0.75 0.091743 0.63 0.75 0.63 0.75 0.63 0.86 0.621667

12 0.05 0.34 0.5 0.119048 0.34 0.75 0.34 0.75 0.15 0.34 0.445

13 0.63 0.34 0.75 0.099 0.63 0.75 0.63 0.75 0.34 0.63 0.621667

14 0.86 0.05 0.5 0.099 0.05 0.75 0.05 0.25 0.05 0.63 0.296667

15 0.05 0.34 0.75 0.091743 0.63 0.75 0.63 0.75 0.63 0.63 0.67

16 0.34 0.15 0.5 0.99 0.63 0.75 0.34 0.25 0.34 0.63 0.49

17 0.63 0.34 0.92 0.99 0.15 0.75 0.63 0.75 0.63 0.63 0.59

18 0.34 0.34 0.92 0.539683 0.34 0.75 0.15 0.5 0.34 0.34 0.403333

19 0.34 0.86 0.92 0.382022 0.86 0.75 0.86 0.75 0.86 0.86 0.823333

20 0.05 0.86 0.92 0.05618 0.63 0.75 0.63 0.75 0.63 0.86 0.708333

Figure 2 DTR-based SFP model

Algorithm:

For the training dataset, the input states were Mr,Ma,

and actual faults, and for the testing dataset, these

were Mr and Ma. The predicted-faults were the output

state for the training and testing datasets.

Predicted-Faults

Design of

DTR-

based

Predictio

n

Mr and Ma Actual Faults

Normalization

DT1 DT ……

DTn

 …………..

Original Training Data

Gurmeet Kaur et al.

614

The following were the steps in the method for the

suggested SFP model that used DTR:

Step 1: The Mr and Ma metric suite of projects was

input as an independent parameter or predictor.

Step 2: The project I's actual faults was input as the

independent parameter or predictor.

Step 3: The regression tree for projects I.......... 1 to N

was generated, where N stands for the total number

of projects.

Step 4: To standardize the predicted faults, each tree

used Equations 5 and 6 [53].

The predicted-faults for each tree were accepted as

standard, represented by dt(I), where I range from 1

to N, and N is the total number of projects.

t(I) = [dt(1)+dt(2)+…….dt(N-1)+dt(N)] (5)

p(I) = dt(I)/t(I) (6)

Figure 3 Illustrates the flowchart of the SFP model

that applies DTR.

Figure 3 Schematic of the DTR-based SFP model

Data purification and cleaning are necessary to

remove inaccurate, imprecise, and incomplete data

from datasets and replace missing values. Data

integration is the process of merging data from

several sources into one dataset, whereas data

reduction is a technique for minimizing the amount

of data to make the analysis easier. However, the

presented dataset was from a single source, and there

was no need to apply data reduction. Data

transformation is the act of changing data's format or

structure. It is achieved through methods of

smoothing and normalization. Nevertheless, the

suggested algorithm for SFP had no requirement for

data transformation. The scaling feature is the final

phase of data pre-processing in machine learning. It

is a technique for standardizing the independent

attributes in the dataset within a specified range. The

values of derived attributes (Mr and Ma) were in the

range (0 to 0.99) before implementation.

To predict faults, supervised machine learning

algorithm (DTR) was utilized, which can used to

resolve problems. The model can predict results for

new data values that were not used during its training

phase. The training and testing datasets for the

suggested SFP model had been split into 70% and

30%, respectively, of the dataset. Figure 4 shows the

basic steps involved in machine learning for

prediction.

Figure 4 SFP model using machine learning

(Original)

Regression is a machine-learning task that involves

estimating values. Regression models help us

understand the fundamental relationships between

inputs and outputs by utilizing the features or

properties of input data and their corresponding

numeric output values. A DTR consists of three

primary nodes:

Root node: It means the goal or decision that must

made;

Decision node: It means that sub-node splits and

possibilities for each characteristic; and

Leaf node: It provides the outcome subcategories

[56].

To identify the position of future splits, the MSE

criterion "friedman_mse" was frequently used for

node m. Since the desired or dependent parameters

were continuous values, the MSE sets the expected

value of the final node to the acquired mean value.

Input Mr and Ma of software projects of training data

Input Actual Fault of software projects of training

data

Develop Regression tree for inputs

Normalized predicted-faults as outputs from

regression tree for software projects

Mr and Ma

(Input)

 Predicted-

faults

(Output)

Machine Learning algorithm for the prediction of

faults

International Journal of Advanced Technology and Engineering Exploration, Vol 11(113)

615

Cross validation: One way to assess a machine-

learning model's performance is through CV. CV aids

in determining an algorithm's optimal performance

score, allowing one to choose the most effective

solution for the given situation.

Thus, to test the trained model, it needs to use data

that the model has never seen before. This dataset is

referring as the test dataset. The CV was applied to

the dataset using Sklearn of Python, and the results

presented the accuracy of the suggested algorithm on

a 10-fold CV. The outcomes of the CV showed the

accuracy of a larger dataset to be 70.12%.

Hyper parameters are an essential aspect of the DT

algorithm, and the DT's hyper-parameters are as

follows: max_depth, min_sample_leaf, splitter,

max_features, max_leaf_nodes,

min_weight_fraction_leaf. As a deeper tree might

include more sub-trees to help with decision-making,

"max-depth" the maximum tree depth, is a crucial

hyper parameter that regulates the complexity of the

DT algorithm [57]. The hyperparameters have been

adjusted to improve accuracy and prevent overfitting.

The hyper-parameters of the suggested DTR-based

SFP algorithm were computed as ‘max_depth: 3’,

‘max_features: sqrt’, ‘max_leaf_nodes: 40’,

min_samples_leaf: 6’, ‘min_weight_fraction_leaf:

0.1’, and ‘splitter: best’.

4. Results
The accuracy obtained after tuning the

hyperparameters of the DTR-based SFP algorithm

was 99.48%.The accuracy of the suggested DTR-

based SFP model for fault prediction is directly

related to the size of the software projects, as

concluded after evaluating its complexity across

different datasets.

Complexity: The accuracy of the suggested DTR-

based SFP model for fault prediction is directly

related to the size of the software projects, as

concluded after evaluating its accuracy across

different sets of datasets (up to 60, up to 120, and up

to 180 software projects).

Table 4 Size of the software projects correlates with

the algorithm's accuracy.

Table 4 Complexity of DTR-based SFP model

Case# Dataset size Accuracy

1 Up to 60 software projects 69.84%

2 Up to 120 software projects 94.55%

3 Up to 180 software projects 99.485%

When there were more software projects, the

accuracy was higher; when there were fewer software

projects, the accuracy was lower.

4.1RQ2:How is it proved that the suggested metric

suite (Mr and Ma) efficiently predicts faults?

Regression is the most used statistical method to

study the relationship between independent and

dependent parameters. In previous research work

[44], statistical analysis was conducted to assess the

reliability of the metric suite (Mr and Ma). A larger

real-time dataset of software projects has been used

in an experiment with DTR to calculate the statistical

performance measures (precision, recall, F-measure,

GM, AUC, and accuracy) of Mr and Mawith

predicted-faults.

Table 5, summarizes the results of the performance

evolution measures of Mr and Ma.

Table 5 Regression analysis results

Performance

measures

Mr Ma

Precision 1 0.5

Recall 1 1

F-measure 1 0.67

Accuracy 0.9513 0.9807

GM 1 0.8185

AUC 98.7185 73.67

Python 3.6 was used to implement the Mr and Ma

evaluation. The values of the performance measures

of the derived parameter Mr and Ma with faults were

in an acceptable range (very high) and indicate that

Mr and Ma can be used more equitably for predicting

project defects. Consequently, it has been

demonstrated that the suggested metric suite (Mr and

Ma) can efficiently predict faults.

4.2RQ3 How is the validity of the suggested DTR-

based model demonstrated?
To validate the suggested model, the suggested

metric suite served as input for the DTR-based SFP

model, which generated "predicted-faults" as the

output.
4.2.1Prediction analysis

The suggested DTR-based SFP model was tested on

a larger, real-time dataset of software projects [51] to

validate the prediction results. Table 6 shows the

prediction results for a subset of 20 software projects

compared with existing SFP models. Figure 5

provides a graphical representation of the prediction

results computed by the suggested model and their

comparison with existing SFP models [15, 27, 30, 37]

for a similar dataset.

Gurmeet Kaur et al.

616

4.2.2Performance analysis

To confirm the accuracy of the SFP model, the

performance metrics RMSE, NRMSE, MMRE,

BMMRE, and R-Squared were computed using DTR.

[15, 17]. Table 7 compares the performance measures

of the suggested DTR-based SFP model with existing

soft computing-based SFP models for a similar

dataset. The suggested SFP model has a low value of

the RMSE, NRMSE, MMRE, and BMMRE and a

high R-Squared value. It indicates that the suggested

model is more efficient in predicting faults than

existing SFP models [15, 27, 30, 37].

Table 6 DTR-based prediction results and comparisons with existing soft-computing-based SFP models

Pr.

No.

Actual

Faults

Inputs Predicted-faults

 Mr Ma Proposed DTR-

based model

ANFIS-

based

model [15]

 FIS-based

model [27]

FIS-based

model [30]

 Bayesian

Net-based

model [37]

1 209 0.812903 0.775 343 191 205 210 254

2 373 0.99 0.445 373 362 ---- 232 349

3 204 0.238095 0.65 204 185 209 113 262

4 53 0.492754 0.538333 53 52 53 53 48

5 29 0.492754 0.621667 29 36 31 26 203

6 71 0.913043 0.628333 71 80 84 40 51

7 90 0.99 0.618333 254 85 97 176 347

8 129 0.99 0.621667 129 131 142 336 516

9 672 0.099 0.67 672 620 ---- 697 674

10 1,768 0.99 0.708333 1768 1730 1740 1650 1526

11 109 0.091743 0.621667 109 102 101 127 145

12 688 0.119048 0.445 688 690 733 135 444

13 476 0.099 0.621667 476 422 446 573 581

14 928 0.099 0.296667 928 935 955 869 986

15 196 0.091743 0.67 196 174 192 105 259

16 184 0.99 0.49 184 156 194 291 501

17 680 0.99 0.59 680 686 ----- 690 722

18 412 0.539683 0.403333 412 380 ---- 400 430

19 91 0.382022 0.823333 91 78 91 110 116

20 5 0.05618 0.708333 5 7 5 6 46

Table 7 DTR-based SFP models' performance comparison with soft computing based SFP models

Table 7 compares the suggested DTR-based SFP

model with the present soft computing-based SFP

models for RMSE. The suggested DTR-based SFP

model had a low RMSE of 3.54 compared to the

existing SFP models [15, 27, 30 and 37]. The MMRE

computed by DTR-based SFP models and existing

models presented in Table 7. Compared to the

existing SFP models [15, 27, 30, 37], the suggested

DTR-based SFP model had a low MMRE of 2.04E-

05. The DTR-based SFP model suggested in Figure 6

had an R-Squared of 99.78%, that is higher than the

existing soft computing-based SFP models

[15, 27, 30, 37].

SFPmodels RMSE NRMSE MMRE BMMRE R-Squared

Suggested (DTR-Based) 3.54 0.002008716 2.04E-05 1.98E-05 99.78

ANFIS[15] 48.524 0.0327 0.01646 0.01646 85.4

FIS[27] 55.161 0.0426 0.02171 0.0229 78.9

FIS[30] 350.49 0.627 0.2523 0.6055 56.7

Bayesian Net[37] 324.7 3.454 0.7948 0.7998 50.8719

International Journal of Advanced Technology and Engineering Exploration, Vol 11(113)

617

Figure 5 Results of the specified DTR-based SFP model's predictions and a comparison with present SFP models

Figure 6 Presenting R-Squared for SFP models

The suggested DTR-based SFP model has been

validated for prediction and performance analysis,

establishing its validity.

5. Discussion
The study aimed to address specific RQs, with RQ1

derived from the first objective. Through an

exploratory review of published works, it found that

four studies utilized the same dataset to develop SFP

models using different soft computing techniques,

including ANFIS [15], FIS [27, 30], and Bayesian

classification [37], as outlined in Table 2. Based on

this evidence, it has been concluded that the literature

review compared fault prediction techniques for the

same dataset.

The second objective concerns the suggested metric

suite (Mr and Ma) and its ability to efficiently predict

faults. These metrics were created by combining

process metrics for different phases of SDLC and

were computed using Equations 2 and 4before being

validated using DTR in Python 3.6. The validation

process involved measuring AUC, F-measure,

precision, recall, GM, and accuracy, and the resulting

values are presented in Table 5. The performance

measures for Mr and Ma with faults were very high,

with values of 98.7185, 1.0, 1.0, 1.0, 1.0, and 0.9513

for Mr, and 73.67, 0.67, 0.5, 1.0, 0.8185, and 0.9807

for Ma, respectively. These values fell within an

acceptable range, indicating that Mr and Ma were

reliable predictors of faults. Thus, we can conclude

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 3 5 7 9 11 13 15 17 19

Faults

Software projects

Analysis of faults prediction

Actual Faults

Predicted Faults Proposed

DTR-based Model

Predicted Faults ANFIS-based

Model [15]

Predicted Faults FIS-based

Model[22]

Predicted Faults FIS-based

Model [27]

Predicted Faults Bayesian Net-

based Model [30]

0

20

40

60

80

100

120

R
-S

q
u

a
re

d
 %

SFP models

Suggested (DTR-

Based)

ANFIS [15]

FIS [27]

FIS [30]

Bayesian Net [37]

Gurmeet Kaur et al.

618

that the suggested metric suite, Mr and Ma, can

efficiently predict faults.

A machine learning-based DTR algorithm is applied

to accurately predict faults to achieve the study's third

objective. The dataset refined and tested the

algorithm using CV, achieving an accuracy of

70.12% at 10-fold. The hyperparameters were fine-

tuned to improve accuracy and used the suggested

metric suite as inputs to implement the tuned model

and deliver "predicted faults" as outputs.

Table 4 illustrates the varying complexity of the

suggested DTR-based SFP model, which depends on

the size of the software projects. The complexity

ranged from 69.84% to 99.485% for 60 to 180

software projects, demonstrating that the suggested

SFP model was effective as the number of

software projects increased.

The third RQ was based on the fourth objective of the

study. For generating predictions from the suggested

SFP model, the suggested metric suite has been taken

as input, and DTR computing has applied to compute

the results or predicted faults. The results of the

prediction and performance were then compared to

existing SFP models that relied on ANFIS [15], FIS

[27, 30], and Bayesian classification [37]. These are

presented in Tables 6 and 7.

Based on the results, it has concluded that

 The suggested DTR-based SFP model performs

outstandingly well with a very low RMSE,

NRMSE, MMRE, BMMRE, and high R-Squared

values of 3.54, 0.002008716, 2.04E-05, 1.98E-05,

and 99.78, respectively, compared to the existing

ANFIS, FIS, and Bayesian net-based SFP models.

This is because the DTR-based SFP model uses

derived parameters (Mr and Ma) as independent

parameters, while others use the basic parameters

of each phase of SDLC and compute fault density

at the end of each phase.

 Compared to the FIS, ANFIS, and Bayesian net-

based models, the accuracy of the DTR-based SFP

model is exceptionally high at 99.48% due to the

optimal combination of process metrics and data

analysis before implementation, which produces

highly accurate results in terms of early detection

capabilities.

Therefore, the computed values of predicted faults

and performance measures of the DTR-based SFP

model confirm its validity. The research paper begins

by outlining the objectives of the study, which

include designing, developing, and validating a

metric suite and SFP model based on DTR for fault

prediction. The paper compares the DTR-based SFP

model to existing models based on soft computing

techniques and concludes that the DTR-based model

is highly accurate and valid for fault prediction. The

study notes that machine learning-based computing is

more efficient for prediction.

5.1 Limitation

The limitation of the study is that the DTR-based SFP

model needs to be validated for other datasets. Future

work could involve verifying the model on different

classifiers such as DL, CNN, and ANN.

A list of abbreviations of terms used in the

manuscript has been included in Appendix I.

6. Conclusion and future work
The present study aims to develop and validate a

machine learning-enabled DTR-based SFP model

that accurately predicts faults in software projects.

The study involved a comprehensive review of the

literature on SFP using soft computing techniques,

revealing that a few studies have employed a similar

dataset to implement SFP models. The study

designed a metric suite that integrated existing

process metrics and deployed Mr and Maas

independent parameters. Mrdesigned using three

process metrics (RC, RS, and RIW), while

Madesigned using six process metrics (DTE, PM,

CTE, DPF, TTE, and SI), with "predicted-faults" as

dependent parameters. The metric suite underwent

empirical validation through regression analysis and

has been implemented using Python with a larger

dataset. The performance measures AUC, precision,

recall, F-measure, and accuracy for both Mr and Ma

with fault were computed, and the results are

presented in Table 5, confirming the efficacy of the

suggested metric suite in predicting faults. The

dataset underwent pre-processing as data cleaning,

feature scaling, cross-validation, and hyper-parameter

tuning before implementation of the suggested

model. The DTR-based machine learning algorithm

was used to design and implement the model, with

Mr and Maas input or independent parameters and

predicted-faults as outcomes or dependent parameter.

The complexity of the suggested DTR-based SFP

model is dependent on the different sizes of software

projects, varying from 69.84% to 99.485% for 60 to

180 software projects, as shown in Table 4. The

interpretation of these results shows that the

suggested SFP model works efficiently as software

projects increase. The prediction results of the

International Journal of Advanced Technology and Engineering Exploration, Vol 11(113)

619

suggested DTR-based SFP model have been

compared with existing SFP models for a subset of

20 software projects. The performance measures

RMSE, NRMSE, MMRE, BMMRE, and R-Squared

have been computed to verify and validate the

suggested model using a larger dataset of software

projects, and the results are shown in Table 7.The

suggested DTR-based SFP model performs more

accurately, with R-squared, RMSE, and MMRE

values of 99.37%, 3.54, and 2.04E-05, respectively,

compared to the existing ANFIS, FIS, and Bayesian

net-based SFP models. The suggested DTR-based

SFP model offers high accuracy for fault prediction,

which can significantly reduce the cost, time, and

effort required for software development. Our study

provides a comprehensive and empirical approach to

developing an efficient SFP model using machine

learning. The suggested metric suite (Mr and Ma) can

predict faults efficiently and be validated empirically.

The findings of this study contribute to the

development of SFP models and provide a practical

and reliable tool for software development.

Future research needs to evaluate the suggested DTR-

based SFP system for new datasets using a different

classifier, such as CNN, DNN, or KNN.

Acknowledgment
I express my heartfelt gratitude to Dr. Ashwini Kush,

Director of the IT Cell at Kurukshetra University,

Kurukshetra, Haryana, India, for their kind guidance and

help. I am also grateful to Ms. Aastha Bhatia, Assistant

Professor of English at Dyal Singh College, Karnal,

Haryana, India, who kindly reviewed and edited the

language in my manuscript to enhance its quality.

Conflicts of interest
The authors have no conflicts of interest to declare.

Data availability
Due to confidentiality agreements with business associates,

the datasets created and processed during the project are

not publicly accessible. However, a sample of the data is

included in the manuscript. The primary source of the

dataset is the PROMISE repository [51].

Author’s contribution statement
All the authors equally contributed in the following stages

of this study: study conception and design, data collection,

analysis, implementation and interpretation of results, and

manuscript preparation.

References
[1] Rathore SS, Kumar S. Linear and non-linear

heterogeneous ensemble methods to predict the

number of faults in software systems. Knowledge-

Based Systems. 2017; 119:232-56.

[2] Sandhu PS, Khullar S, Singh S, Bains SK, Kaur M,

Singh G. A study on early prediction of fault

proneness in software modules using genetic

algorithm. International Journal of Computer and

Information Engineering. 2010; 4(12):1891-6.

[3] Kaur R, Sharma ES. Various techniques to detect and

predict faults in software system: survey. International

Journal on Future Revolution in Computer Science &

Communication Engineering. 2018; 4(2):330-6.

[4] Chidamber SR, Kemerer CF. A metrics suite for

object oriented design. IEEE Transactions on Software

Engineering. 1994; 20(6):476-93.

[5] Liu J, Lei J, Liao Z, He J. Software defect prediction

model based on improved twin support vector

machines. Soft Computing. 2023; 27(21):16101-10.

[6] Azzeh M, Alqasrawi Y, Elsheikh Y. A soft computing

approach for software defect density prediction.

Journal of Software: Evolution and Process. 2023;

36(4).

[7] Batool I, Khan TA. Software fault prediction using

deep learning techniques. Software Quality Journal.

2023; 31(4):1241-80.

[8] Borandag E. Software fault prediction using an RNN-

based deep learning approach and ensemble machine

learning techniques. Applied Sciences. 2023; 13(3):1-

21.

[9] Thirumoorthy K. A feature selection model for

software defect prediction using binary Rao

optimization algorithm. Applied Soft Computing.

2022; 131:109737.

[10] Goyal S. Software fault prediction using evolving

populations with mathematical diversification. Soft

Computing. 2022; 26(24):13999-4020.

[11] Daoud MS, Aftab S, Ahmad M, Khan MA, Iqbal A,

Abbas S, et al. Machine learning empowered software

defect prediction system. Intelligent Automation &

Soft Computing. 2022; 31(2): 1287:1300.

[12] Farid AB, Fathy EM, Eldin AS, Abd-elmegid LA.

Software defect prediction using hybrid model (CBIL)

of convolutional neural network (CNN) and

bidirectional long short-term memory (Bi-LSTM).

Peer J Computer Science. 2021; 7:1-22.

[13] Zain ZM, Sakri S, Asmak INH, Parizi RM. Software

defect prediction harnessing on multi 1-dimensional

convolutional neural network structure. Computers,

Materials & Continua. 2022; 71(1):1521-46.

[14] Hassouneh Y, Turabieh H, Thaher T, Tumar I,

Chantar H, Too J. Boosted whale optimization

algorithm with natural selection operators for software

fault prediction. IEEE Access. 2021; 9:14239-58.

[15] Sharma P, Sangal AL. Building and testing a fuzzy

linguistic assessment framework for defect prediction

in ASD environment using process-based software

metrics. Arabian Journal for Science and Engineering.

2020; 45(12):10327-51.

[16] Tumar I, Hassouneh Y, Turabieh H, Thaher T.

Enhanced binary moth flame optimization as a feature

selection algorithm to predict software fault

prediction. IEEE Access. 2020; 8:8041-55.

Gurmeet Kaur et al.

620

[17] Juneja K. A fuzzy-filtered neuro-fuzzy framework for

software fault prediction for inter-version and inter-

project evaluation. Applied Soft Computing. 2019;

77:696-713.

[18] Turabieh H, Mafarja M, Li X. Iterated feature

selection algorithms with layered recurrent neural

network for software fault prediction. Expert Systems

with Applications. 2019; 122:27-42.

[19] Bilgaiyan S, Mishra S, Das M. Effort estimation in

agile software development using experimental

validation of neural network models. International

Journal of Information Technology. 2019; 11(3):569-

73.

[20] Chatterjee S, Maji B. A bayesian belief network based

model for predicting software faults in early phase of

software development process. Applied Intelligence.

2018; 48(8):2214-28.

[21] Kalaivani N, Beena R. Overview of software defect

prediction using machine learning algorithms.

International Journal of Pure and Applied

Mathematics. 2018; 118(20):3863-73.

[22] Arshad A, Riaz S, Jiao L, Murthy A. Semi-supervised

deep fuzzy c-mean clustering for software fault

prediction. IEEE Access. 2018; 6:25675-85.

[23] Geng W. RETRACTED: cognitive deep neural

networks prediction method for software fault

tendency module based on bound particle swarm

optimization. Cognitive Systems Research. 2018;

5(c):1-12.

[24] Singh P. Comprehensive model for software fault

prediction. In international conference on inventive

computing and informatics 2017 (pp. 1103-8). IEEE.

[25] Dhanajayan RC, Pillai SA. SLMBC: spiral life cycle

model-based bayesian classification technique for

efficient software fault prediction and classification.

Soft Computing. 2017; 21(2):403-15.

[26] Chatterjee S, Maji B. A new fuzzy rule based

algorithm for estimating software faults in early phase

of development. Soft Computing. 2016; 20:4023-35.

[27] Yadav HB, Yadav DK. A fuzzy logic based approach

for phase-wise software defects prediction using

software metrics. Information and Software

Technology. 2015; 63:44-57.

[28] He P, Li B, Liu X, Chen J, Ma Y. An empirical study

on software defect prediction with a simplified metric

set. Information and Software Technology. 2015;

59:170-90.

[29] Monden A, Hayashi T, Shinoda S, Shirai K, Yoshida

J, Barker M, et al. Assessing the cost effectiveness of

fault prediction in acceptance testing. IEEE

Transactions on Software Engineering. 2013;

39(10):1345-57.

[30] Pandey AK, Goyal NK, Pandey AK, Goyal NK.

Multistage model for residual fault prediction. Early

Software Reliability Prediction: a Fuzzy Logic

Approach. 2013:59-80.

[31] Hall T, Beecham S, Bowes D, Gray D, Counsell S. A

systematic literature review on fault prediction

performance in software engineering. IEEE

Transactions on Software Engineering. 2011;

38(6):1276-304.

[32] Jin C, Jin SW, Ye JM. Artificial neural network-based

metric selection for software fault-prone prediction

model. IET Software. 2012; 6(6):479-87.

[33] Bishnu PS, Bhattacherjee V. Software fault prediction

using quad tree-based K-means clustering algorithm.

IEEE Transactions on Knowledge and Data

Engineering. 2011; 24(6):1146-50.

[34] Arisholm E, Briand LC, Johannessen EB. A

systematic and comprehensive investigation of

methods to build and evaluate fault prediction models.

Journal of Systems and Software. 2010; 83(1):2-17.

[35] Catal C, Diri B. Investigating the effect of dataset size,

metrics sets, and feature selection techniques on

software fault prediction problem. Information

Sciences. 2009; 179(8):1040-58.

[36] Turhan B, Bener A. Analysis of naive bayes

assumptions on software fault data: an empirical

study. Data & Knowledge Engineering. 2009;

68(2):278-90.

[37] Fenton N, Neil M, Marsh W, Hearty P, Radliński Ł,

Krause P. On the effectiveness of early life cycle

defect prediction with bayesian nets. Empirical

Software Engineering. 2008; 13:499-537.

[38] Khoshgoftaar TM, Seliya N. Software quality

classification modeling using the SPRINT decision

tree algorithm. International Journal on Artificial

Intelligence Tools. 2003; 12(3):207-25.

[39] Koru AG, Liu H. An investigation of the effect of

module size on defect prediction using static

measures. In proceedings of the 2005 workshop on

predictor models in software engineering 2005 (pp. 1-

5). ACM.

[40] Wang Q, Yu B, Zhu J. Extract rules from software

quality prediction model based on neural network. In

16th international conference on tools with artificial

intelligence 2004 (pp. 191-5). IEEE.

[41] Briand LC, Wüst J, Ikonomovski SV, Lounis H.

Investigating quality factors in object-oriented

designs: an industrial case study. In proceedings of the

21st international conference on software engineering

1999 (pp. 345-54).

[42] Kaur G, Pruthi J. A study of agile-based approaches to

improve software quality. International Journal of

Computer and Systems Engineering. 2022; 16(5):158-

63.

[43] Kaur G, Pruthi J, Gandhi P. Machine learning based

software fault prediction models. Karbala International

Journal of Modern Science. 2023; 9(2):9.

[44] Kaur G, Pruthi J, Gandhi P. Decision tree regression

analysis of proposed metric suite for software fault

prediction. SN Computer Science. 2023; 5(1):69.

[45] Keele S. Guidelines for performing systematic

literature reviews in software engineering. EBSE

Technical Report. 2007.

[46] Lessmann S, Baesens B, Mues C, Pietsch S.

Benchmarking classification models for software

defect prediction: a proposed framework and novel

International Journal of Advanced Technology and Engineering Exploration, Vol 11(113)

621

findings. IEEE Transactions on Software Engineering.

2008; 34(4):485-96.

[47] Myrtveit I, Stensrud E, Shepperd M. Reliability and

validity in comparative studies of software prediction

models. IEEE Transactions on Software Engineering.

2005; 31(5):380-91.

[48] Raeder T, Hoens TR, Chawla NV. Consequences of

variability in classifier performance estimates. In

international conference on data mining 2010 (pp.

421-30). IEEE.

[49] Song Q, Jia Z, Shepperd M, Ying S, Liu J. A general

software defect-proneness prediction framework.

IEEE Transactions on Software Engineering. 2010;

37(3):356-70.

[50] Ince DC, Hatton L, Graham-cumming J. The case for

open computer programs. Nature. 2012;

482(7386):485-8.

[51] http://promise.site.uottawa.ca/SERepository/datasets-

page.html. Accessed 26 March 2024.

[52] Wang S, Yao X. Using class imbalance learning for

software defect prediction. IEEE Transactions on

Reliability. 2013; 62(2):434-43.

[53] Xu M, Watanachaturaporn P, Varshney PK, Arora

MK. Decision tree regression for soft classification of

remote sensing data. Remote Sensing of Environment.

2005; 97(3):322-36.

[54] Baştanlar Y, Özuysal M. Introduction to machine

learning. miRNomics: MicroRNA Biology and

Computational Analysis. 2014; 105-28.

[55] Sarkar D, Bali R, Sharma T. Practical machine

learning with python. Book" Practical Machine

Learning with Python. 2018; 25-30.

[56] Manias DM, Jammal M, Hawilo H, Shami A, Heidari

P, Larabi A, et al. Machine learning for performance-

aware virtual network function placement. In global

communications conference 2019 (pp. 1-6). IEEE.

[57] Pedregosa F, Varoquaux G, Gramfort A, Michel V,

Thirion B, Grisel O, et al. Scikit-learn: machine

learning in python. The Journal of Machine Learning

Research. 2011; 12:2825-30.

Ms. Gurmeet Kaur is a research

scholar in the Department of Computer

Science and Technology at Manav

Rachna University, Faridabad,

Haryana, India. She completed her

post-graduation in computer sciences in

2006. She has three research

publications in national journals and

seven in international journals. She has also successfully

published a book chapter. Additionally, she has presented

nine research papers at national conferences and three at

international conferences.

Email: grmtkaur02@gmail.com

Dr. Jyoti Pruthi is the Joint Director

and a Professor in the Department of

Computer Science at Manav Rachna

University, Faridabad, Haryana, India.

She is an experienced academician and

researcher with over 18 years of

experience spanning research,

academics, and industry. Dr. Pruthi has

published numerous papers in international journals,

conferences, and book chapters. Her research areas include

Sentiment Analysis, Data Mining, Software Engineering,

Natural Language Processing (NLP), and Prediction

Analysis. She is a certified Professional Scrum Master and

possesses in-depth working knowledge of Agile

frameworks. Dr. Pruthi has played a pivotal role in

integrating agility techniques into the education system by

establishing the first Agile Classroom in higher education

in India. Recently, she was selected from among 200

participants out of 1,500 applicants across India for the

AICTE UKIERI Leadership Program conducted by Dudley

College, UK. She is also a certified trainer for Infosys and

Xebia.

Email: jyoti@mru.edu.in

Dr. Parul Gandhi is a Professor at

Manav Rachna International Institute of

Research and Studies (MRIIRS),

Faridabad, Haryana, India. She holds a

Doctorate in Computer Science with a

focus on Software Engineering from

Guru Jambheshwar University, Hisar.

She is also a Gold Medalist in M.Sc.

Computer Science. Dr. Gandhi has a strong inclination

towards academics and research, boasting over 15 years of

experience in academic, research, and administrative roles.

She has published more than 30 research papers in reputed

international and national journals and conferences. Her

research interests include software quality, soft computing,

software metrics, component-based software development,

data mining, and IoT. Currently, she serves as a Professor

at MRIIRS and oversees the university's PhD program. Dr.

Gandhi is also an editorial board member and reviewer for

various reputed journals and conferences. She has

successfully published many book chapters and edited

various books in high-indexing databases. Additionally, she

is a lifetime member of the Computer Society of India.

Email: parul.sca@mriu.edu.in

Appendix I
S. No. Abbreviation Description

1 ANFIS Adaptive Neuro Fuzzy Inference

System

2 ANN Artificial Neural Network

3 AUC Area Under Curve

4 BACO Binary Ant Colony Optimization

5 BILSTM Bidirectional Long Short-Term

Memory

6 BGA Binary Genetic Algorithm

7 BMFO Binary Moth Fire Optimization

8 BMMRE Balanced Mean Magnitude of
Relative Error

http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://promise.site.uottawa.ca/SERepository/datasets-page.html

Gurmeet Kaur et al.

622

9 BPSO Bound Particle Swarm
Optimization

10 BR Bayesian Regularization

11 CART Classification and Regression Tree

12 CBO Coupling In Between Object
Classes

13 CBIL Hybrid Model of Convolution

Neural Network

14 CCM Cyclomatic Complexity Metric

15 CE Cost-Effectiveness Measure

16 CGA Clustering Genetic Algorithm

17 CK Chidamber and Kemerer's

18 CNN Convolution Neural Network

19 CTE Coding Team Experience

20 1D-CNN 1-Dimensional Convolutional
Neural Network

21 CV Cross Validation

22 DDN Deep Neural Network

23 DFCM Deep Fuzzy C-Mean

24 DIT Depth of Inheritance Tree

25 DPF Defined Process Followed

26 DL Deep Learning

27 DTE Design Team Experience

28 DT Decision Tree

29 DTNB Decision Table Naive Bayes

30 DTR Decision Tree Regression

31 FIS Fuzzy Inference System

32 FS Feature Selection

33 FS-EPwMD Feature Selection - Evolving

Populations With Mathematical
Diversification

34 GM Geometric Mean

35 HCM Halstead Complexity Metric

36 JDT Java Development Tools

37 KLOC Kilo Lines of Codes

38 KNN K Nearest Neighbor

39 LCOM Lack of Cohesion of Methods

40 LDA Linear Discriminant Analysis

41 LOC Line of Codes

42 LR Logistic Regression

43 L-RNN Layered Recurrent Neural
Organization

44 LSTN Long Short-Term Memory

45 Ma Adoption-Based Metric

46 MCDM Multi-Criteria Decision Making

47 MMRE Mean Magnitude of Relative Error

48 Mr Requirement Phase-Based Metric

49 MRE Magnitude of Relative Error

50 MSE Mean Square Error

51 NRMSE Normalized Root Mean Square

Error

52 NB Naive Bayes

53 NOC Number of Children

54 OSS Open Source Software

55 PART Partial C4.5 Rule Based Classifier

56 PCA Primary Component Analysis

57 PD Probability of Detection

58 PDE Plug-in Development Environment

59 PM Process Maturity

60 PF Probability of False alarm

61 RBFN Radial Basis Function Network

62 RC Requirements Complexity

63 RF Random Forest

64 RFC Response for Class

65 RIW Review, Inspection and Walk-
Through

66 RMSE Root Mean Square Error

67 RNN Recurrent Neural Network

68 ROC Receiver Operating Characteristic

69 RQ Research Question

70 RS Requirements Stability

71 SDLC Software Development Life Cycle

72 SFP Software Fault Prediction

73 SI Stake-Holders Involvement

74 SVM Support Vector Machine

75 TTE Testing Team Experience

76 WMC Weighted Methods Per Class

77 WOA Wrapper Algorithms

78 XP Extreme Programming

79 XP-TDD Extreme Programming-Test

Driven Development

Appendix II
Sr. No. RS RC RIW DTE PM CTE DPF TTE SI Faults

1 0.86 0.34 0.92 0.86 0.75 0.86 0.75 0.86 0.86 91

2 0.8428 0.3332 0.9016 0.8428 0.735 0.8428 0.735 0.8428 0.8428 89.18

3 0.825944 0.326536 0.883568 0.825944 0.7203 0.825944 0.7203 0.825944 0.825944 87.3964

4 0.809425 0.320005 0.865897 0.809425 0.705894 0.809425 0.705894 0.809425 0.809425 85.64847

5 0.793237 0.313605 0.848579 0.793237 0.691776 0.793237 0.691776 0.793237 0.793237 83.9355

6 0.777372 0.307333 0.831607 0.777372 0.677941 0.777372 0.677941 0.777372 0.777372 82.25679

7 0.761824 0.301186 0.814975 0.761824 0.664382 0.761824 0.664382 0.761824 0.761824 80.61166

8 0.746588 0.295163 0.798675 0.746588 0.651094 0.746588 0.651094 0.746588 0.746588 78.99942

9 0.731656 0.289259 0.782702 0.731656 0.638072 0.731656 0.638072 0.731656 0.731656 77.41944

10 0.717023 0.283474 0.767048 0.717023 0.625311 0.717023 0.625311 0.717023 0.717023 75.87105

11 0.702683 0.277805 0.751707 0.702683 0.612805 0.702683 0.612805 0.702683 0.702683 74.35363

12 0.688629 0.272249 0.736673 0.688629 0.600549 0.688629 0.600549 0.688629 0.688629 72.86655

13 0.674856 0.266804 0.721939 0.674856 0.588538 0.674856 0.588538 0.674856 0.674856 71.40922

14 0.661359 0.261468 0.707501 0.661359 0.576767 0.661359 0.576767 0.661359 0.661359 69.98104

15 0.648132 0.256238 0.693351 0.648132 0.565231 0.648132 0.565231 0.648132 0.648132 68.58142

16 0.635169 0.251113 0.679484 0.635169 0.553927 0.635169 0.553927 0.635169 0.635169 67.20979

17 0.622466 0.246091 0.665894 0.622466 0.542848 0.622466 0.542848 0.622466 0.622466 65.86559

18 0.610017 0.241169 0.652576 0.610017 0.531991 0.610017 0.531991 0.610017 0.610017 64.54828

19 0.597816 0.236346 0.639525 0.597816 0.521351 0.597816 0.521351 0.597816 0.597816 63.25732

International Journal of Advanced Technology and Engineering Exploration, Vol 11(113)

623

Sr. No. RS RC RIW DTE PM CTE DPF TTE SI Faults

20 0.58586 0.231619 0.626734 0.58586 0.510924 0.58586 0.510924 0.58586 0.58586 61.99217

21 0.34 0.63 0.75 0.15 0.75 0.34 0.75 0.34 0.34 373

22 0.3332 0.6174 0.735 0.147 0.735 0.3332 0.735 0.3332 0.3332 365.54

23 0.326536 0.605052 0.7203 0.14406 0.7203 0.326536 0.7203 0.326536 0.326536 358.2292

24 0.320005 0.592951 0.705894 0.141179 0.705894 0.320005 0.705894 0.320005 0.320005 351.0646

25 0.313605 0.581092 0.691776 0.138355 0.691776 0.313605 0.691776 0.313605 0.313605 344.0433

26 0.307333 0.56947 0.677941 0.135588 0.677941 0.307333 0.677941 0.307333 0.307333 337.1625

27 0.301186 0.558081 0.664382 0.132876 0.664382 0.301186 0.664382 0.301186 0.301186 330.4192

28 0.295163 0.546919 0.651094 0.130219 0.651094 0.295163 0.651094 0.295163 0.295163 323.8108

29 0.289259 0.535981 0.638072 0.127614 0.638072 0.289259 0.638072 0.289259 0.289259 317.3346

30 0.283474 0.525261 0.625311 0.125062 0.625311 0.283474 0.625311 0.283474 0.283474 310.9879

31 0.277805 0.514756 0.612805 0.122561 0.612805 0.277805 0.612805 0.277805 0.277805 304.7682

32 0.272249 0.504461 0.600549 0.12011 0.600549 0.272249 0.600549 0.272249 0.272249 298.6728

33 0.266804 0.494372 0.588538 0.117708 0.588538 0.266804 0.588538 0.266804 0.266804 292.6993

34 0.261468 0.484484 0.576767 0.115353 0.576767 0.261468 0.576767 0.261468 0.261468 286.8454

35 0.256238 0.474794 0.565231 0.113046 0.565231 0.256238 0.565231 0.256238 0.256238 281.1084

36 0.251113 0.465299 0.553927 0.110785 0.553927 0.251113 0.553927 0.251113 0.251113 275.4863

37 0.246091 0.455993 0.542848 0.10857 0.542848 0.246091 0.542848 0.246091 0.246091 269.9765

38 0.241169 0.446873 0.531991 0.106398 0.531991 0.241169 0.531991 0.241169 0.241169 264.577

39 0.236346 0.437935 0.521351 0.10427 0.521351 0.236346 0.521351 0.236346 0.236346 259.2855

40 0.231619 0.429177 0.510924 0.102185 0.510924 0.231619 0.510924 0.231619 0.231619 254.0998

41 0.15 0.63 0.75 0.86 0.75 0.34 0.5 0.63 0.63 90

42 0.34 0.15 0.92 0.34 0.75 0.86 0.75 0.34 0.86 204

43 0.3332 0.147 0.9016 0.3332 0.735 0.8428 0.735 0.3332 0.8428 199.92

44 0.326536 0.14406 0.883568 0.326536 0.7203 0.825944 0.7203 0.326536 0.825944 195.9216

45 0.320005 0.141179 0.865897 0.320005 0.705894 0.809425 0.705894 0.320005 0.809425 192.0032

46 0.313605 0.138355 0.848579 0.313605 0.691776 0.793237 0.691776 0.313605 0.793237 188.1631

47 0.307333 0.135588 0.831607 0.307333 0.677941 0.777372 0.677941 0.307333 0.777372 184.3998

48 0.301186 0.132876 0.814975 0.301186 0.664382 0.761824 0.664382 0.301186 0.761824 180.7118

49 0.295163 0.130219 0.798675 0.295163 0.651094 0.746588 0.651094 0.295163 0.746588 177.0976

50 0.34 0.05 0.75 0.63 0.75 0.63 0.75 0.63 0.63 196

