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1.Introduction 
Soft computing techniques have become 

indispensable resources for addressing optimization 

and prediction problems in various computing 

applications [1]. These approaches provide practical, 

flexible, and accurate solutions designed specifically 

to deal with the complexity that arises in real-world 

situations. These techniques are excellent at handling 

probabilistic or uncertain data, offering the best 

answer to a variety of issues in several fields, 

including biogenetic informatics, telecommunication 

networks, and computers [1]. 

 
*Author for correspondence 

Early detection and prediction of software defects 

have enormous potential to improve the productivity 

and dependability of the software development 

process [2]. Through proactive fault detection and 

resolution across the software development life cycle 

(SDLC), organizations can save a considerable 

amount of computation time, cut expenses, and better 

manage resource allocation [2]. Software defects, 

which can range from defects to failures, not only 

prevent programs from functioning as intended but 

also result in significant time and cost savings if they 

are not fixed [2]. 

 

Research Article 

Abstract  
This research aims to develop a framework for software fault prediction (SFP) using machine learning techniques. A 

software fault may be the reason behind the failure of software functioning, and even a minor fault could cause the 

failure. Efficient SFP improves the overall quality and performance of the software products while streamlining the 

development process. The framework aims to reduce the cost and time involved in software development while optimizing 

the reliability of the software. It facilitates quick and efficient testing by identifying the modules that are likely to fail at 

the early stages of the project. Soft computing techniques provide an easy and effective solution for prediction problems. 

This study emphasizes the significance of soft computing approaches in SFP and highlights their role in improving 

computational efficiency, reducing development costs, and enhancing the reliability of software applications. Soft 

computing-based technique was proposed to address the prediction challenges. A metric suite was suggested, which 

includes a requirement-based metric and an adoption metric, designed by integrating process metrics of software 

development phases for fault prediction. It also designs decision tree regression (DTR)-based SFP model that uses these 

metrics as input and delivers predicted faults as output. The literature review reveals that only a few existing frameworks 

meet the requirement of implementing SFP models using a broad range of soft computing approaches for the same 

dataset. The suggested metric suite is validated by computing performance measures such as the area under curve (AUC), 

F-measure, precision, recall, and accuracy. The high-performance values of the suggested metric suite demonstrate its 

efficient fault prediction capability. The study also compares the performance of the suggested model with other adaptive 

neuro fuzzy inference systems (ANFIS), fuzzy-inference systems, and Bayesian-net-based SFP models, measured by root 

mean square error (RMSE), normalized root mean square error (NRMSE), the mean magnitude of relative error 

(MMRE), the balanced mean magnitude of relative error (BMMRE), and R-Squared. The suggested model outperforms 

others, achieving RMSE, MMRE, and R-Squared values of 3.54, 2.04 e-05, and 99.78, respectively. This study presents a 

highly efficient DTR based SFP model with more fault prediction accuracy than the existing SFP models. 

Implementation of this model is to significantly reduce costs and improve the time and effort of software development, 

making it an invaluable tool for software engineers. 
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Efficient software fault prediction (SFP) improves 

the overall quality and performance of software 

products while streamlining the development process. 

Developers can reduce the likelihood of software 

failures and improve user satisfaction by anticipating 

and mitigating possible issues before they escalate by 

applying soft computing-based approaches like 

machine learning, neural networks, and fuzzy 

inference systems (FIS).  

 

This study emphasizes the significance of soft 

computing approaches in SFP and highlights their 

role in improving computational efficiency, reducing 

development costs, and enhancing the reliability of 

software applications. It focuses the significance of 

proactive fault detection in optimizing the SDLC. It 

also aims to deliver high-quality software products by 

examining various soft computing techniques and 

their applications in fault prediction.  

 

Software system errors are a key concern, and 

software quality assurance and reliability are crucial 

to ensure that the program is of excellent quality. 

Regarding software and its measures, two critical 

concepts have gained attention from experts. It is a 

commonly known fact that tasks such as time 

estimation, practical testing, financial planning, and 

measurement forecasts ensure quality standards [2]. 

A software bug is a fault, error, failure, or flaw that 

occurs during the execution of a software program, 

which prevents it from giving accurate results [2]. A 

software fault may be the reason behind the failure of 

software functioning, and even a minor fault could 

cause the failure [2]. Software failure refers to the 

unpredictable results that might arise from external 

factors and state variables that induce defaults when a 

utility program is running. If these issues are detected 

at the early stages of product development, time and 

worth can be consistently and considerably reduced 

[3]. 

 

It is advisable to use an SFP during software 

development and apply interaction activities to help 

anticipate defective modules at the initial phases of 

software development. Predicting the defective 

modules in the beginning makes testing easy and 

quick. Present-day development also raises the 

requirements for programming standards. Defective 

software modules cause failures, reduced customer 

satisfaction, and increased maintenance expenses. 

The goal of constructing SFP models is to provide 

sufficient initial assessments of the quality of 

developing software projects by utilizing courses of 

action that can be applied right on time for the project 

life cycle. 

 

Designing SFP models seeks to apply metrics often 

acquired during the project life cycle to provide 

sufficient early assessments of software reliability. 

Additionally, measurements may apply to product 

development, internal control, programming 

evaluations, and process creation and verification. 

Cyclomatic complexity metric (CCM), line of codes 

(LOC), and Halstead complexity metric (HCM) can 

be used to analyze the product's complexity. Defect 

density is a product reliability metric that assesses the 

defect per kilo LOC or defect per function point. 

Defect removal efficiency is one of the significant 

calculations in a programming standard. Class-level 

metrics were proposed by Chidamber and Kemerer 

(CK) in 1994 and continue to be used today by a 

community of experts and software developers [4]. 

These can be applied in object-oriented 

programming. These metrics include weighted 

methods per class (WMC), depth of inheritance tree 

(DIT), Coupling in between object classes (CBO), 

response for class (RFC), number of children (NOC), 

and lack of cohesion of methods (LCOM) [4]. 

Process metrics are a set of measurements based on 

data gathered throughout the SDLC. Process metrics 

include code deltas, churn measures, requirement 

metrics, and change metrics [4]. 

 

SFP intends to predict defect-prone programming 

modules by using some attributes of the software 

project. It applies to a known project by preparing an 

expectation model using project properties or 

attributes supported by defect data and progressively 

applying the forecast model to foresee shortcomings 

for uncertain tasks. The fault prediction model of 

software has three significant parts, which are.  

 SFP methods or features,  

 Software fault datasets, and  

 Evolution measures of the prediction result 

 

A set of measures based on the data gathered during 

the first forecast of different programming metrics 

(such as cyclomatic complexity, LOC, etc.) may be 

used as an independent parameter. As a result, the 

required fault predicted (such as the measure of 

faults, both broken and flawed) functions as a 

dependent parameter. The software fault information 

is found in the source code file changed logs and 

other project files containing information about the 

execution of the software project. The fault datasets 

are those where the faulty data is found later in the 

SDLC. Finally, the performance of the constructed 
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fault forecast model is measured using different 

execution assessment measurements such as review, 

exactness, precision, and accuracy. 

 

Soft computing is a collection of computational 

techniques that provide simple and efficient solutions 

to prediction-related issues [1]. The primary 

categories of soft computing techniques include 

fuzzy computing, neural networks, machine learning, 

Bayesian nets, evolutionary computing, and others 

[1]. 

 

However, there are still some research challenges in 

fault prediction. Fault prediction relies heavily on 

code-related metrics, but there is a need to identify 

and prioritize other metrics and integrate them to 

serve as early indicators of potential faults. 

 

It has been noted from the past study that there are 

very few SFP models developed using customized 

metrics. Existing models for fault prediction may 

base on traditional metrics. An optimal combination 

of process metrics for fault prediction may result in 

high accuracy in early detection capabilities. The 

proposed research, therefore, aims to develop a soft 

computing model incorporating a machine learning 

approach for SFP using a suggested metric suite.  

 

Nowadays, the prediction problem centers on 

machine learning methods, and the SFP model affects 

several phases of software engineering that improve 

cost, time to completion, and reliability. The 

objectives of this study include the following steps: 

 To study and compare the existing fault prediction 

techniques. 

 To identify, design, and validate a customized 

metric suite at an early stage of software 

development. 

 To apply the suggested metric suite as input to 

develop a new SFP model using soft-computing 

techniques. 

 To validate the suggested model using a larger 

dataset and compare it with the existing SFP 

models. 

 

The principal advantage of the proposed decision tree 

regression (DTR)-based SFP model lays in its 

exceptional accuracy for fault prediction. This 

accuracy is expected to substantially decrease 

development costs and enhance efficiency in 

software development processes. 

To achieve the research objectives, specific research 

questions (RQs) have been formulated that are 

addressed throughout the paper. 

RQ1: How is it proved that the literature study has 

compared soft computing-based fault prediction 

techniques for the common component? 

RQ2: How is it proved that the suggested metric 

suite (Mr and Ma) efficiently predicts faults? 

RQ3: How is the validity of the suggested DTR-

based model demonstrated? 

 

The organization of the research paper is as follows: 

section 2 includes the latest view of the literature on 

SFP models based on various soft computing 

techniques and a meta-analysis of the literature. 

Section 3 describes the design of the suggested 

metric suite derived by integrating process metrics of 

phases of the SDLC as inputs and implementing the 

DTR-based SFP model that accepts the suggested 

metric suite as inputs (independent variables) and 

delivers predicted-faults as outputs (a dependent 

variable). Section 4 describes the prediction and 

validation outcomes of the suggested metric suite and 

SFP model and compares them with existing SFPs 

using soft-computing approaches. Section 5 presents 

a detailed discussion of the outcomes computed from 

the suggested metric suite and model for SFP and 

their validity, as stated in the research objectives. It 

has been concluded in section 6. 

 

2.Related study 
The importance of SFP lies in its ability to identify 

defective items in software modules before 

deployment, thereby reducing development costs and 

time and improving the quality of software packages. 

Soft computing provides a simple and efficient way 

to solve prediction problems, making it an ideal 

approach for SFP. Table 1 provides a detailed 

description of the literature survey conducted about 

SFP, highlighting the various soft-computing 

methodologies in this area. 

Table 1 Relevant literature analysis 

Ref. No. Citation Objective Methodology used Advantages/Limitations 

[5] 

 

Liu et al.  

(2023) 

 

To overcome problems 

with imbalanced data 

categorization. 

Twin support vector 

machines (SVM) and 

clustering 

The experimental results demonstrate that the 

proposed method outperforms existing 

algorithms in terms of prediction accuracy, 

robustness, and optimised performance when 

classifying unbalanced data. 
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Ref. No. Citation Objective Methodology used Advantages/Limitations 

[6] Azzeh et al. 

(2023)  

Introduced a novel 

prediction model to 

address the imprecision in 

software measurement that 

combines fuzzy logic with 

grey system theory. 

Fuzzy logic and gray 

relational analysis 

Furthermore, a sensitivity analysis approach 

was used to assess the suggested model 

against various levels of uncertainty. The 

results demonstrated that the model acts 

consistently under varying levels of 

uncertainty. 

[7] Batool and 

Khan (2023)  

Deep learning (DL) 

techniques were used to 

forecast software flaws 

and compare the outcomes 

with pre-existing models. 

CK metrics-based datasets 

for long short-term memory 

(LSTM), bidirectional 

LSTM (BILSTM), and 

radial basis function 

network (RBFN) 

It has been determined that, in comparison to 

LSTM and BILSTM, RBFN produces the 

necessary results more quickly. The 

suggested model offered a more precise and 

effective SFP approach and evaluated the 

model through k-fold cross validation (CV). 

[8] Borandag 

(2023)  

A DL based SFP model 

was suggested in the 

extreme programming 

(XP) work environment to 

manage the projects 

efficiently by monitoring 

the development progress 

and status of the observed 

faults. 

Incorporated five distinct 

base classifiers and their RF 

ensembles from Apache 

active dataset, extreme 

programming-test driven 

development (XP-

TDD),  eclipse and JIRA, 

and the classifiers 

ultimately  

Applied a DL neural network, which was 

made up of convolution neural network 

(CNN) and the LSTM and BILSTM 

algorithms. It was determined that using a 

multi-layered recurrent neural network 

(RNN) based DL model for fault prediction 

produced positive results. 

[9] Thirumoorthy 

(2022)  

The fault prediction 

probability and the feature 

selection (FS) frequency 

are used in the suggested 

work to evaluate the 

candidate solution's 

fitness. 

Multi-criteria decision 

making (MCDM) and Rao 

optimization techniques are 

the foundations of the 

hybrid FS (filter–wrapper) 

approach. 

There are three widely used benchmark 

NASA datasets: PC5, JM1, and KC1. The 

most significant feature subset for fault 

prediction with an average accuracy on the 

benchmark datasets has been used to evaluate 

the efficacy of the proposed method. 

[10] Goyal (2022)  SFP models applying the 

FS - evolving populations 

with mathematical 

diversification (FS-

EPwMD) technique. 

Using mathematical 

diversity for genetic 

evolution, a unique FS 

technique is developed. 

While input five different classification 

algorithms—decision tree (DT), K nearest 

neighbor (KNN), SVM, artificial neural 

network (ANN) and naive bayes (NB). ANN 

significantly beat all other SFP models. 

[11] Daoud et al. 

(2021)  

ANNs are among the most 

popular machine-learning 

methods for identifying 

software components that 

are prone to defects. 

NASA information and a 

cloud-based architecture 

were utilized to anticipate 

software defects in real 
time.  

 

Scaled conjugate gradient, Levenberg-

Marquardt, Broyden-Fletcher-Goldfarb-

Shanno quasi-Newton, and applied Bayesian 

regularization (BR). It was discovered that 

out of all the training functions, the BR 

performed better. 

[12] Farid et al. 

(2021)  

Suggested a hybrid model 

that predicts the 

problematic parts of 

source code. 

CNN with Bi-LSTM 

applied to PROMISE 

datasets 

The results showed that the hybrid model of 

convolution neural network (CBIL) model 

outperforms CNN in terms of average f-

measure and RNN in terms of area under 

curve (AUC), with improvements of 25% 

and 18%, respectively. 

[13] Zain et 

al.(2021)  

Introduced a unique 1-

dimensional convolutional 

neural network (1D-CNN) 

architecture that makes 

use of DL. 

Used CNN on NASA 

datasets along with four 

baseline classification 

models DT, SVM, and 

random forest (RF). 

The outcomes showed that an optimal and 

modest 1D-CNN with a dropout layer beats 

baseline and state-of-the-art models by 

66.79% and 23.88%, respectively, in terms of 

f-measure. 

[14] Hassouneh et 

al. (2021) 

 

Suggested novel wrapper 

algorithms (WOA) 

variants as to address the 

problems associated with 

feature (metric) selection 

in SFP applications. 

Roulette wheel, stochastic 

universal sampling, random 

basis, linear position, and 

process metric. 

The author employed 17 publicly available 

SFP datasets to calculate AUC and running 

time, and found that the proposed tournament 

approach outperformed the primary WOA. 

[15] Sharma and FIS was developed to Hybrid neuro-fuzzy method The suggested structure offers enhanced 
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Ref. No. Citation Objective Methodology used Advantages/Limitations 

Sangal (2020) 

 

assess how well various 

measures predict problems 

in agile software projects. 

andProcess metric precision, mean magnitude of relative error 

(MMRE), balanced mean magnitude of 

relative error (BMMRE), root mean square 

error (RMSE), and normalized root mean 

square error (NRMSE), particularly for 

projects involving datasets from the 

PROMISE repository that have a size of 50 

kilo line of code (KLOC) or more. 

[16] Tumar et al. 

(2020) 

 

Developed a precise 

framework to foresee 

programming flaws and 

supported the FS 

algorithm in solving 

classification problems. 

Used KNN, linear 

discriminant analysis 

(LDA), and DT as three 

distinct classifiers. 

The unbalanced data issue is solved via FS 

using binary moth fire optimization (BMFO) 

feature selection, which both improve the 

data set and compute the average AUC. 

[17] Juneja  (2019) 

 

Devised a technique to 

identify product defects 

utilising inter-version and 

inter-project assessment. 

Using fuzzy logic as a 

basis. Metric for products 

and processes 

The recommended method yielded very good 

results for computing AUC and geometric 

mean (GM) as well as RMSE for eclipse- 

java development tools (JDT) and eclipse E 

plug-in development environment (PDE) 

based projects. 

[18] Turabieh et 

al.(2019) 

 

To employ several feature 

selection (FS) strategies to 

handle a layered recurrent 

neural organization (L-

RNN) and choose 

important programming 

measurements. 

The terms binary ant colony 

optimization (BACO), 

binary genetic algorithm 

(BGA), and bound particle 

swarm optimization 

(BPSO) are interchangeable 

and process metrics. 

Building a strong classifier using 19 actual 

projects taken from the PROMISE store and 

computed AUC as opposed to using a preset 

feature layout. 

[19] Bilgaiyan et 

al. (2019) 

 

Performed a near-

investigation of the 

expected for various ANN 

types. 

Highlighted the Elman 

neural network and the 

ANN-feed forward back-

propagation neural network 

as two types of neural 

networks. Products and 

Processes Measure 

For data sets from 21 agile-based projects, 

the feed forward back-propagation neural 

network exhibits high algorithm speed, fixed 

algorithm time, and adaptability to non-

critical failures according to Elman 

organisation. 

[20] Chatterjee 

and Maji 

(2018) 

To determine a goal 

evaluation of the 

programming lifecycle's 

early vulnerabilities and to 

project the overall number 

of errors 

Interval type-2 fuzzy 

reasoning 

As a result of non-parametric and non-linear 

nature of ANN, the suggested model has 

consolidated ANN, to complete number of 

defects which help in affirming better 

expectation and to recognize the association 

among inputs sources. 

[21] Kalaivani and 

Beena (2018) 

 

An analysis concentrated 

on the methods used to 

introduce the quantity of 

defects, quantity of 

alterations, and quantity of 

newly amended lines. 

Object-oriented metrics The researchers reported that system metrics 

were frequent and efficient addition to 

forecast modules that usually encouraged 

prediction methods. 

 

[22] Arshad et al. 

(2018) 

 

Deep Fuzzy C-Mean 

clustering (DFCM) uses 

feature compression and 

semi-supervised DFCM to 

enhance the quality of the 

software dataset with 

imbalanced classes. 

 

Using attribute compression 

techniques, stochastic under 

sampling, and semi-

supervised DFCM. 

 

An actual software project dataset from 

eclipse and NASA was used in order to 

assess the effectiveness of the approach. f-

measure and AUC were used to assess the 

performance of this dataset relative to other 

more recent classical baseline methods. 

[23] Geng (2018) Demonstrated a tendency Process metric, BAPS The innovation in dimensionality reduction 
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Ref. No. Citation Objective Methodology used Advantages/Limitations 

 to reduce programming 

maintenance costs by 

foreseeing product defect 

proneness in soft modules. 

(bound particle swarm 

optimisation), and deep 

neural network (DDN) 

forecasting 

based on BPSO can improve the execution of 

real-world projects (such as NASA and 

eclipse) and strengthen organisational 

structure. It also computes the probability of 

detection (PD), AUC, and f-measure. 

[24] Singh (2017) 

 

 

 

 

 

 

The creation of a model 

using data from a similar 

category to forecast an 

error in a different project 

falls under this category. 

Using rules to help with 

learning Decision tables, 

NNge, OneR, Ridor, C4.5, 

JRip, classification and 

regression tree (CART), 

Conjunctive Rule, NB, 

hybrid classifier decision 

table naive bayes(DTNB), 

etc. 

 

In terms of average AUC performance for 

cases inside projects, C 4.5 has done better. 

With results of 69%, DTNB outperformed 

the other rule-based learner when results 

from multiple projects were compared. 

[25] Dhanajayan 

and 

Pillai  (2016)  

 

The effective prediction 

and classification of 

software faults using 

Bayesian approaches 

Bayesian classification Using a strong similarity aware clustering 

algorithm based on the dataset's feature 

similarity measure and the suggested 

technique's computed accuracy, precious 

recall, f-measures, and PD. 

[26] Chatterjee 

and Maji 

(2016) 

 

To estimate software 

flaws using a fuzzy rule-

based system in the early 

stages of development. 

Used the linguistic values 

of software metrics of the 

requirement analysis 

Phase 

.A fuzzy rule-based strategy was suggested 

that took into account the size of the 

programme as well as the weighting of each 

input software statistic. 

 

[27] Yadav and 

Yadav (2015) 

 

Design a multistage fault 

prediction model 

FIS and process metrics By applying the fuzzy inference tool from 

Matlab, the author created a model for each 

software development step. Using a 

PROMISE dataset, the author obtained 

results in the form of a defect density value 

for each stage. 

[28] He et al. 

(2015)  

A research project into 

software defect prediction 

using a condensed set of 

metrics 

Process metrics The study portrayed the process of metric 

selection was performed through a well-

qualified assessment 

[29] Monden et al. 

(2013) 

 

Examining the 

effectiveness of methods 

for dividing up test effort 

according to fault 

prediction using a 

simulation model. 

Simulation model 

 

Only when the proper test approach was used 

and high fault prediction accuracy was a 

reduction in testing effort realised. A set of 

modules to be tested, as well as the resource 

allocation approach and appropriate test 

strategy. 

[30] Pandey et al. 

(2013) 

 

 

Implement a multistage 

failure prediction model. 

FIS  and 

process metrics 

At the conclusion of each stage of the SDLC, 

the output of the model is obtained as a 

measurement of fault density. The author 

developed a fuzzy logic model and 

implemented it in Matlab using data from 

PROMISE. 

[31] Hall et al. 

(2012) 

Described a quantitative 

model to examine how 

measurements are 

presented in their raw 

form. 

The author employed open 

source software (OSS) 

projects and the NASA and 

PROMISE data sets. 

Various studies were conducted utilising 

OSS projects to examine the capabilities of 

product measures for programming defect 

expectation. 

[32] Jin et al. 

(2012) 

 

Using solely software 

metrics, the approach 

finds software modules 

that are prone to errors. 

ANNs and SVMs They first employed ANNs to eliminate 

inferior qualities before utilising the SVM to 

forecast fault-proneness with the features 

they had chosen. In ANN, the selection of the 

hidden neuron group is carried out 
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Ref. No. Citation Objective Methodology used Advantages/Limitations 

automatically. 

[33] Bishnu and 

Bhattacherjee 

(2012) 

 

Design a SFP model using 

quad tree-based k-means 

clustering algorithm. 

 

Quad tree-based k-means 

clustering, logistic 

regression (LR) technique 

and NB algorithm 

 

The findings indicate that the quality of 

machine learning methodology needs to be 

improved. 

 

[34] Arisholm et 

al. (2010)  

 

In order to create 

forecasting models and 

discover Java system 

components with a high 

defect probability for 

fault-proneness, compare 

various data mining and 

machine learning 

techniques. 

Object oriented metrics has 

been suggested 

Examine numerous approaches for 

evaluating the models' performance in terms 

of (i) the suggested cost-effectiveness 

measure (CE), receiver operating 

characteristic (ROC) area, accuracy and 

precision/recall, and confusion matrix. 

[35] Catal and Diri 

(2009) 

 

To research the effects of 

FS methods, metrics, and 

dataset size on the 

challenge of predicting 

software faults. 

RF algorithms developed 

using the new artificial 

immune systems approach 

to computational 

intelligence 

According to their research, RF outperforms 

NB as a prediction algorithm for large 

datasets and is the top option for small 

datasets. 

[36] Turhan and 

Bener (2009) 

 

Used software fault data to 

assess the veracity of the 

NB assumptions, namely 

attribute independence and 

equality in importance. 

NB algorithm 

 

It has been demonstrated that the 

independence assumption of the NB 

algorithm does not negatively impact 

primary component analysis (PCA) pre-

processing.  They employed PD, probability 

of false alarm (PF), and balancing methods in 

their investigation. 

[37] Fenton et al. 

(2008) 

 

Design a multistage fault 

prediction model 

Bayesians Net and 

process metrics 

The values of output variables are computed 

using a probability distribution, either 

conditionally or unconditionally, for the node 

and variables on dataset from PROMISE. 

Also computed performance measure. 

[38] Khoshgoftaar 

and Seliya 

(2007) 

 

Presented a fresh approach 

to evaluating software 

quality in the absence of 

defect information or 

classifications of 

programme modules based 

on their quality. 

K-means clustering 

 

The expanding dataset increases the number 

of clusters and iterations, and this study lacks 

a clear-cut expert decision-making 

mechanism. As a result, the expert will need 

to dedicate a significant amount of time to 

this technique. 

[39] Koru and Liu 

(2005) 

 

LOC was used as a 

predictor, and a set of 

static measurements were 

used. 

J48 and KStar algorithms The machine learning methods used by the 

WEKA are neither inspiring nor depressing. 

The f-measure was used to assess 

performance on publicly available NASA 

datasets, and metrics at the method and class 

levels were looked at. 

[40] Wang et al. 

(2004) 

 

To accomplish their aim 

of improving the 

understand ability of high-

quality prediction models 

based on neural networks, 

they employed the 

clustering genetic 

algorithm (CGA). 

Applied ANNs When utilising neural networks for 

prediction, the accuracy of the predictions is 

higher than when using the CGA rule set. 

[41] Briand et al. 

(1998) 

 

Coupling and cohesion 

estimation 

Examining the unique 

statistics, PCA, univariate 

regression, and related to 

measure in relation to the 

defect data. 

The author lists a number of 

recommendations, including the following: 

method innovation should be given strong 

emphasis because it has been shown to be 

important for solid coupling and a steady 

pointer of defect tracing. 
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In addition to these studies, there are some other 

studies [4244] which are related to the literature 

discussed. 

 

2.1RQ1. How will it be proved that the literature 

study compared the various soft computing-

based fault prediction techniques for finding a 

common dataset? 
A method used for combining and analyzing data 

from multiple primary studies is called meta-analysis 

[45]. Using several data sets, data pre-processing, 

evaluation systems, and performance statistics makes 

it challenging to make sense of the many prediction 

findings [4649].In addition, no single prediction 

approach prevails [46].These variations are 

highlighted even more by the absence of standard 

reporting procedures [5055]. Because of this, 

deciding which fault prediction methodologies to 

apply and evaluating their chances of success can be 

challenging for experts and, more importantly, 

practitioners. 

 

The meta-analysis aims to produce an overall 

perspective on fault prediction methodologies to 

address these concerns and provide insight into the 

most effective approaches. The different parameters 

that affect the results of the prediction of faults are: 

1. The methodology or techniques used to construct 

and evaluate the prediction model;  

2. The features or measures employed as input;  

3. The metrics used to evaluate prediction 

performance; 

4. The datasets used to validate prediction 

performance. 

 

2.2Interpretation of RQ1 

Our objective was to select, as thoroughly as 

possible, significant studies that have performed 

empirical evaluations of SFP models; additionally, 

these studies indicate a positive control (i.e., defect- 

or not-defect-prone). The focus of the meta-analysis 

is to select the studies from the list of publications 

that satisfied the criteria of using the same dataset in 

their proposed work. These studies included the same 

dataset from the PROMISE repository. These studies 

served as the basis of the meta-analysis and are 

mentioned in Table 2. 

 

Table 2 Meta-analysis on the basis of Dataset 

Ref. No. Learning technique Input variable Performance measures 

[15] Bayesian Net Process metric MMRE, BMMRE, MdMRE, R-Squared 

[27] FIS  Process metric  MSE, RMSE, MPE, MAPE 

[30] FIS  Process metric MMRE, BMMRE 

[37] ANFIS Process metric MMRE, BMMRE, RMSE, NRMSE, R-Squared 

 

Where RMSE: root mean square error, NRMSE: 

normalized root mean square error, MMRE: mean 

magnitude of relative error, BMMRE: balanced mean 

magnitude of relative error, MdMRE: median 

magnitude of relative error, MAPE: mean average 

precision, MPE: mean percentage error. 

 

The research includes a variety of soft computing-

based failure prediction models or frameworks that 

utilize process or product metrics. The results of the 

meta-analysis of the literature study indicated a 

comparison of existing SFP models based on soft 

computing approaches (Bayesian net, FIS, and 

ANFIS) for the similar dataset produced by Fenton 

[37], Panday [30], Yadav [27], and Sharma [15]. 

  

Hence, it can be concluded that the literature study 

compared the soft computing-based fault prediction 

techniques for a similar dataset as a common 

component (Dataset). The literature review found that 

existing SFP models used traditional metrics, and few 

known models implemented customized metrics. To 

improve the chances of achieving accurate results in 

fault prediction, it is essential to incorporate soft 

computing techniques based on machine learning. An 

optimal combination of process metrics for fault 

prediction may result in high accuracy in early 

detection capabilities. 

 

3.Methods 
This section outlines the design of the suggested 

metric suites and the implementation of the DTR-

based SFP model. The methodology for fault 

prediction is given in Figure 1. The model accepted 

the suggested metric suite as inputs - independent 

variables - and delivered predicted faults as outputs - 

a dependent variable. 

 

3.1Suggested metric suite design 

Requirement-based metric (Mr) and adoption metric 

(Ma) were formulated in this section. Process 

measurements were taken as inputs into the design of 

Mrand Ma. Appendix II shows a subset of a larger 

real-time dataset from PROMISE repository. 
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It is a group of variables for every software project, 

which were further classified into requirements, 

testing, coding phase metrics, and faults. There are 

two types of parameters or variables: dependent and 

independent. For fault prediction, the following 

variables were considered independent or input: 

requirements complexity (RC), requirements stability 

(RS), review, inspection and walkthrough (RIW), 

design team experience (DTE), process maturity 

(PM), coding team experience (CTE), defined 

process followed (DPF), testing team experience 

(TTE), and stake-holders involvement (SI). 

 

 
Figure 1 Methodology of the suggested framework 

for fault prediction 

 

The dependent variable was the response or 

output/target variable which represents the effect of 

independent variables on the present dataset. Fault 

was considered a dependent or target variable. 
3.1.1Requirement-based metric (Mr) 

In the design of Mr, an optimum combination of 

requirement phase process metrics (such as RC, RS, 

and RIW) was used, where RC is directly linked to 

the faults and RIW and RS have an inverse 

relationship to the faults. Equation 2 provides the 

requirement-based metric Mrfor i = 1...N software 

projects using Equation 1. The Mr inspired 

requirement-based measure illustrated the 

relationship between the requirement phase metrics 

(RC, RS, and RIW).  

Mr (i) = 2 ×RCr(i) / (RSr(i) + RIWr(i)) (1) 

Mr(i) ={
                      

                      
  (2) 

 
3.1.2Adoption metric (Ma) 

For the larger dataset, a different metric based on the 

process metrics of the SDLC, specifically the design, 

coding, and testing phases, was proposed. The 

independent variables in this metric were DTE, PM, 

CTE, DPF, TTE, and SI; which are inversely related 

to faults. In this case, all of the independent variables 

were included in the same location at the same time 

and were related to the dependent variables in the 

same way. This metric was termed an "adoption 

metric," or Ma, and is represented in Equation 4 

which has used in Equation 3 for software projects 

with i =1. N. 

ma(i)=(DTE(i)+PM(i)+DPF(i)+CTE(i)+SI(i)+TTE(i))

/6     (3) 

Ma (i) ={
                 

                  
  (4) 

 

Table 3 presents the results of implementing Mr and 

Ma's Python source code for a subset of 20 software 

projects from a dataset of PROMISE. 

 

3.2Suggested model 

Numerous realistic, precise, and dynamic theories 

have existed to handle the complexity of real-world 

problems based on soft computing techniques. The 

suggested fault prediction model was designed using 

supervised learning's DTR computation. 
3.2.1DTR computing-based SFP model: 

To predict faults in software projects, DTR was 

applied, because the relationship between 

independent variables and dependent variable is 

nonlinear. To handle the prediction from nonlinear 

data, the regression or DT is used. Implicit criteria 

that apply to both linear and non-linear connections 

between independent and dependent parameters were 

used in the design of the DTR algorithm [52]. The 

suggested model included the pseudo-code for DTR 

and explained how the algorithm worked to generate 

regression trees for each project. 

1. The entire data used for the training sample was 

the root node. 

2. The value of the independent variables was 

selected to be exact. 

3. Recursively assigning of the documentation was 

performed using values of independent variables. 

4. The DT center node, or root, was determined by 

addressing the analytical technique. It determined 

the order in which independent variables were 

added. 

 

In the development of the SFP model, a regression-

based tree was created for each project, with the 

predicted-faults of each project considered as the 

target or dependent parameters, while the suggested 

metric suite of Mr and Ma was applied as an 

independent parameter. Each regression tree received 

Identification and designing of metric suite for the fault prediction   

Implementation of the suggested fault prediction model using 
decision tree regression by applying suggested metric suite as 

inputs 

Validation of the suggested metric suite 

Testing and validation of the suggested DTR-based fault 
prediction model using wider dataset and their comparision with 

existing SFP models 
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the values of Mr and Ma as input, and the output was 

the predicted-faults. Figure 2 describes the 

functioning of the DTR-based SFP model.  

 

Table 3 Implementation results of the Mr and Ma 
Pr. no. RC RS RIW Mr DTE PM CTE DPF TTE SI Ma 

1 0.63 0.63 0.92 0.812903 0.63 0.92 0.86 0.75 0.63 0.86 0.775 

2 0.63 0.34 0.75 0.99 0.15 0.75 0.34 0.75 0.34 0.34 0.445 

3 0.15 0.34 0.92 0.238095 0.34 0.75 0.86 0.75 0.34 0.86 0.65 

4 0.34 0.63 0.75 0.492754 0.63 0.5 0.63 0.5 0.34 0.63 0.538333 

5 0.34 0.63 0.75 0.492754 0.63 0.75 0.63 0.75 0.34 0.63 0.621667 

6 0.63 0.63 0.75 0.913043 0.63 0.75 0.63 0.5 0.63 0.63 0.628333 

7 0.63 0.15 0.75 0.99 0.86 0.75 0.34 0.5 0.63 0.63 0.618333 

8 0.63 0.15 0.5 0.99 0.63 0.75 0.63 0.75 0.34 0.63 0.621667 

9 0.86 0.63 0.75 0.099 0.63 0.75 0.63 0.75 0.63 0.63 0.67 

10 0.63 0.05 0.75 0.99 0.63 0.75 0.63 0.75 0.63 0.86 0.708333 

11 0.05 0.34 0.75 0.091743 0.63 0.75 0.63 0.75 0.63 0.86 0.621667 

12 0.05 0.34 0.5 0.119048 0.34 0.75 0.34 0.75 0.15 0.34 0.445 

13 0.63 0.34 0.75 0.099 0.63 0.75 0.63 0.75 0.34 0.63 0.621667 

14 0.86 0.05 0.5 0.099 0.05 0.75 0.05 0.25 0.05 0.63 0.296667 

15 0.05 0.34 0.75 0.091743 0.63 0.75 0.63 0.75 0.63 0.63 0.67 

16 0.34 0.15 0.5 0.99 0.63 0.75 0.34 0.25 0.34 0.63 0.49 

17 0.63 0.34 0.92 0.99 0.15 0.75 0.63 0.75 0.63 0.63 0.59 

18 0.34 0.34 0.92 0.539683 0.34 0.75 0.15 0.5 0.34 0.34 0.403333 

19 0.34 0.86 0.92 0.382022 0.86 0.75 0.86 0.75 0.86 0.86 0.823333 

20 0.05 0.86 0.92 0.05618 0.63 0.75 0.63 0.75 0.63 0.86 0.708333 

 

 
Figure 2 DTR-based SFP model 

 

Algorithm: 

For the training dataset, the input states were Mr,Ma, 

and actual faults, and for the testing dataset, these 

were Mr and Ma. The predicted-faults were the output 

state for the training and testing datasets. 

 

Predicted-Faults 

Design of 

DTR-

based 

Predictio

n 

Mr and Ma Actual Faults 

Normalization 

DT1 DT ……   

DTn 

    ………….. 

Original Training Data 
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The following were the steps in the method for the 

suggested SFP model that used DTR: 

 

Step 1: The Mr and Ma metric suite of projects was 

input as an independent parameter or predictor. 

Step 2: The project I's actual faults was input as the 

independent parameter or predictor. 

Step 3: The regression tree for projects I.......... 1 to N 

was generated, where N stands for the total number 

of projects. 

Step 4: To standardize the predicted faults, each tree 

used Equations 5 and 6 [53]. 

 

The predicted-faults for each tree were accepted as 

standard, represented by dt(I), where I range from 1 

to N, and N is the total number of projects. 

t(I) = [dt(1)+dt(2)+…….dt(N-1)+dt(N)] (5) 

p(I) =  dt(I)/t(I)    (6) 

 

Figure 3 Illustrates the flowchart of the SFP model 

that applies DTR. 

 

 
Figure 3 Schematic of the DTR-based SFP model 

 

Data purification and cleaning are necessary to 

remove inaccurate, imprecise, and incomplete data 

from datasets and replace missing values. Data 

integration is the process of merging data from 

several sources into one dataset, whereas data 

reduction is a technique for minimizing the amount 

of data to make the analysis easier. However, the 

presented dataset was from a single source, and there 

was no need to apply data reduction. Data 

transformation is the act of changing data's format or 

structure. It is achieved through methods of 

smoothing and normalization. Nevertheless, the 

suggested algorithm for SFP had no requirement for 

data transformation. The scaling feature is the final 

phase of data pre-processing in machine learning. It 

is a technique for standardizing the independent 

attributes in the dataset within a specified range. The 

values of derived attributes (Mr and Ma) were in the 

range (0 to 0.99) before implementation. 

  

To predict faults, supervised machine learning 

algorithm (DTR) was utilized, which can used to 

resolve problems. The model can predict results for 

new data values that were not used during its training 

phase. The training and testing datasets for the 

suggested SFP model had been split into 70% and 

30%, respectively, of the dataset. Figure 4 shows the 

basic steps involved in machine learning for 

prediction. 

 

 
Figure 4 SFP model using machine learning 

(Original) 

 

Regression is a machine-learning task that involves 

estimating values. Regression models help us 

understand the fundamental relationships between 

inputs and outputs by utilizing the features or 

properties of input data and their corresponding 

numeric output values. A DTR consists of three 

primary nodes:  

Root node: It means the goal or decision that must 

made; 

Decision node: It means that sub-node splits and 

possibilities for each characteristic; and  

Leaf node: It provides the outcome subcategories 

[56]. 

 

To identify the position of future splits, the MSE 

criterion "friedman_mse" was frequently used for 

node m. Since the desired or dependent parameters 

were continuous values, the MSE sets the expected 

value of the final node to the acquired mean value.  

Input Mr and Ma of software projects of training data 

Input Actual Fault of software projects of training 

data 

Develop Regression tree for inputs 

Normalized predicted-faults as outputs from 

regression tree for software projects 

Mr and Ma               

(Input) 

 Predicted-

faults 

(Output) 

Machine Learning algorithm for the prediction of 

faults 



International Journal of Advanced Technology and Engineering Exploration, Vol 11(113)                                                                                                             

615          

 

Cross validation: One way to assess a machine-

learning model's performance is through CV. CV aids 

in determining an algorithm's optimal performance 

score, allowing one to choose the most effective 

solution for the given situation. 

 

Thus, to test the trained model, it needs to use data 

that the model has never seen before. This dataset is 

referring as the test dataset.  The CV was applied to 

the dataset using Sklearn of Python, and the results 

presented the accuracy of the suggested algorithm on 

a 10-fold CV. The outcomes of the CV showed the 

accuracy of a larger dataset to be 70.12%. 

 

Hyper parameters are an essential aspect of the DT 

algorithm, and the DT's hyper-parameters are as 

follows: max_depth, min_sample_leaf, splitter, 

max_features, max_leaf_nodes, 

min_weight_fraction_leaf. As a deeper tree might 

include more sub-trees to help with decision-making, 

"max-depth" the maximum tree depth, is a crucial 

hyper parameter that regulates the complexity of the 

DT algorithm [57]. The hyperparameters have been 

adjusted to improve accuracy and prevent overfitting. 

The hyper-parameters of the suggested DTR-based 

SFP algorithm were computed as ‘max_depth: 3’, 

‘max_features: sqrt’, ‘max_leaf_nodes: 40’, 

min_samples_leaf: 6’, ‘min_weight_fraction_leaf: 

0.1’, and ‘splitter: best’. 

 

4. Results  
The accuracy obtained after tuning the 

hyperparameters of the DTR-based SFP algorithm 

was 99.48%.The accuracy of the suggested DTR-

based SFP model for fault prediction is directly 

related to the size of the software projects, as 

concluded after evaluating its complexity across 

different datasets. 

 

Complexity: The accuracy of the suggested DTR-

based SFP model for fault prediction is directly 

related to the size of the software projects, as 

concluded after evaluating its accuracy across 

different sets of datasets (up to 60, up to 120, and up 

to 180 software projects). 

Table 4 Size of the software projects correlates with 

the algorithm's accuracy. 

 

Table 4 Complexity of DTR-based SFP model 

Case# Dataset size Accuracy 

1 Up to 60 software projects 69.84% 

2 Up to 120 software projects 94.55% 

3 Up to 180 software projects 99.485% 

 

When there were more software projects, the 

accuracy was higher; when there were fewer software 

projects, the accuracy was lower. 

 

4.1RQ2:How is it proved that the suggested metric 

suite (Mr and Ma) efficiently predicts faults? 

Regression is the most used statistical method to 

study the relationship between independent and 

dependent parameters. In previous research work 

[44], statistical analysis was conducted to assess the 

reliability of the metric suite (Mr and Ma). A larger 

real-time dataset of software projects has been used 

in an experiment with DTR to calculate the statistical 

performance measures (precision, recall, F-measure, 

GM, AUC, and accuracy) of Mr and Mawith 

predicted-faults.  

 

Table 5, summarizes the results of the performance 

evolution measures of Mr and Ma.  

 

Table 5 Regression analysis results 

Performance 

measures 

Mr Ma 

Precision 1 0.5 

Recall 1 1 

F-measure 1 0.67 

Accuracy  0.9513 0.9807 

GM 1 0.8185 

AUC 98.7185 73.67 

 

Python 3.6 was used to implement the Mr and Ma 

evaluation. The values of the performance measures 

of the derived parameter Mr and Ma with faults were 

in an acceptable range (very high) and indicate that 

Mr and Ma can be used more equitably for predicting 

project defects. Consequently, it has been 

demonstrated that the suggested metric suite (Mr and 

Ma) can efficiently predict faults. 

 

4.2RQ3 How is the validity of the suggested DTR-

based model demonstrated? 
To validate the suggested model, the suggested 

metric suite served as input for the DTR-based SFP 

model, which generated "predicted-faults" as the 

output. 
4.2.1Prediction analysis 

The suggested DTR-based SFP model was tested on 

a larger, real-time dataset of software projects [51] to 

validate the prediction results. Table 6 shows the 

prediction results for a subset of 20 software projects 

compared with existing SFP models. Figure 5 

provides a graphical representation of the prediction 

results computed by the suggested model and their 

comparison with existing SFP models [15, 27, 30, 37] 

for a similar dataset. 
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4.2.2Performance analysis 

To confirm the accuracy of the SFP model, the 

performance metrics RMSE, NRMSE, MMRE, 

BMMRE, and R-Squared were computed using DTR. 

[15, 17]. Table 7 compares the performance measures 

of the suggested DTR-based SFP model with existing 

soft computing-based SFP models for a similar 

dataset. The suggested SFP model has a low value of 

the RMSE, NRMSE, MMRE, and BMMRE and a 

high R-Squared value. It indicates that the suggested 

model is more efficient in predicting faults than 

existing SFP models [15, 27, 30, 37]. 

 

Table 6 DTR-based prediction results and comparisons with existing soft-computing-based SFP models 

Pr. 

No. 

Actual 

Faults 

Inputs Predicted-faults 

 Mr Ma Proposed DTR-

based model  

ANFIS-

based 

model [15] 

 FIS-based 

model [27]     

FIS-based 

model [30] 

  Bayesian 

Net-based 

model [37] 

1 209 0.812903 0.775 343 191 205 210 254 

2 373 0.99 0.445 373 362 ---- 232 349 

3 204 0.238095 0.65 204 185 209 113 262 

4 53 0.492754 0.538333 53 52 53 53 48 

5 29 0.492754 0.621667 29 36 31 26 203 

6 71 0.913043 0.628333 71 80 84 40 51 

7 90 0.99 0.618333 254 85 97 176 347 

8 129 0.99 0.621667 129 131 142 336 516 

9 672 0.099 0.67 672 620 ---- 697 674 

10 1,768 0.99 0.708333 1768 1730 1740 1650 1526 

11 109 0.091743 0.621667 109 102 101 127 145 

12 688 0.119048 0.445 688 690 733 135 444 

13 476 0.099 0.621667 476 422 446 573 581 

14 928 0.099 0.296667 928 935 955 869 986 

15 196 0.091743 0.67 196 174 192 105 259 

16 184 0.99 0.49 184 156 194 291 501 

17 680 0.99 0.59 680 686 ----- 690 722 

18 412 0.539683 0.403333 412 380 ---- 400 430 

19 91 0.382022 0.823333 91 78 91 110 116 

20 5 0.05618 0.708333 5 7 5 6 46 

 

Table 7 DTR-based SFP models' performance comparison with soft computing based SFP models 

 

Table 7  compares the suggested DTR-based SFP 

model with the present soft computing-based SFP 

models for RMSE. The suggested DTR-based SFP 

model had a low RMSE of 3.54 compared to the 

existing SFP models [15, 27, 30 and 37]. The MMRE 

computed by DTR-based SFP models and existing 

models presented in Table 7. Compared to the 

existing SFP models [15, 27, 30, 37], the suggested 

DTR-based SFP model had a low MMRE of 2.04E-

05. The DTR-based SFP model suggested in Figure 6 

had an R-Squared of 99.78%, that is higher than the 

existing soft computing-based SFP models 

[15, 27, 30, 37]. 

  

SFPmodels RMSE NRMSE MMRE BMMRE R-Squared 

Suggested (DTR-Based) 3.54 0.002008716 2.04E-05 1.98E-05 99.78 

ANFIS[15] 48.524 0.0327 0.01646 0.01646 85.4 

FIS[27] 55.161 0.0426 0.02171 0.0229 78.9 

FIS[30] 350.49 0.627 0.2523 0.6055 56.7 

Bayesian Net[37] 324.7 3.454 0.7948 0.7998 50.8719 
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Figure 5 Results of the specified DTR-based SFP model's predictions and a comparison with present SFP models 

 

 
Figure 6 Presenting R-Squared for SFP models 

 

The suggested DTR-based SFP model has been 

validated for prediction and performance analysis, 

establishing its validity. 

 

5. Discussion 
The study aimed to address specific RQs, with RQ1 

derived from the first objective. Through an 

exploratory review of published works, it found that 

four studies utilized the same dataset to develop SFP 

models using different soft computing techniques, 

including ANFIS [15], FIS [27, 30], and Bayesian 

classification [37], as outlined in Table 2. Based on 

this evidence, it has been concluded that the literature 

review compared fault prediction techniques for the 

same dataset. 

The second objective concerns the suggested metric 

suite (Mr and Ma) and its ability to efficiently predict 

faults. These metrics were created by combining 

process metrics for different phases of SDLC and 

were computed using Equations 2 and 4before being 

validated using DTR in Python 3.6. The validation 

process involved measuring AUC, F-measure, 

precision, recall, GM, and accuracy, and the resulting 

values are presented in Table 5. The performance 

measures for Mr and Ma with faults were very high, 

with values of 98.7185, 1.0, 1.0, 1.0, 1.0, and 0.9513 

for Mr, and 73.67, 0.67, 0.5, 1.0, 0.8185, and 0.9807 

for Ma, respectively. These values fell within an 

acceptable range, indicating that Mr and Ma were 

reliable predictors of faults. Thus, we can conclude 
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that the suggested metric suite, Mr and Ma, can 

efficiently predict faults. 

 

A machine learning-based DTR algorithm is applied 

to accurately predict faults to achieve the study's third 

objective. The dataset refined and tested the 

algorithm using CV, achieving an accuracy of 

70.12% at 10-fold. The hyperparameters were fine-

tuned to improve accuracy and used the suggested 

metric suite as inputs to implement the tuned model 

and deliver "predicted faults" as outputs. 

Table 4  illustrates the varying complexity of the 

suggested DTR-based SFP model, which depends on 

the size of the software projects. The complexity 

ranged from 69.84% to 99.485% for 60 to 180 

software projects, demonstrating that the suggested 

SFP model was effective as the number of 

software projects increased. 

 

The third RQ was based on the fourth objective of the 

study. For generating predictions from the suggested 

SFP model, the suggested metric suite has been taken 

as input, and DTR computing has applied to compute 

the results or predicted faults. The results of the 

prediction and performance were then compared to 

existing SFP models that relied on ANFIS [15], FIS 

[27, 30], and Bayesian classification [37]. These are 

presented in Tables 6 and 7.  

 

Based on the results, it has concluded that 

 The suggested DTR-based SFP model performs 

outstandingly well with a very low RMSE, 

NRMSE, MMRE, BMMRE, and high R-Squared 

values of 3.54, 0.002008716, 2.04E-05, 1.98E-05, 

and 99.78, respectively, compared to the existing 

ANFIS, FIS, and Bayesian net-based SFP models. 

This is because the DTR-based SFP model uses 

derived parameters (Mr and Ma) as independent 

parameters, while others use the basic parameters 

of each phase of SDLC and compute fault density 

at the end of each phase.  

 Compared to the FIS, ANFIS, and Bayesian net-

based models, the accuracy of the DTR-based SFP 

model is exceptionally high at 99.48% due to the 

optimal combination of process metrics and data 

analysis before implementation, which produces 

highly accurate results in terms of early detection 

capabilities.  

 

Therefore, the computed values of predicted faults 

and performance measures of the DTR-based SFP 

model confirm its validity. The research paper begins 

by outlining the objectives of the study, which 

include designing, developing, and validating a 

metric suite and SFP model based on DTR for fault 

prediction. The paper compares the DTR-based SFP 

model to existing models based on soft computing 

techniques and concludes that the DTR-based model 

is highly accurate and valid for fault prediction. The 

study notes that machine learning-based computing is 

more efficient for prediction.  

 

5.1 Limitation 

The limitation of the study is that the DTR-based SFP 

model needs to be validated for other datasets. Future 

work could involve verifying the model on different 

classifiers such as DL, CNN, and ANN. 

 

A list of abbreviations of terms used in the 

manuscript has been included in Appendix I. 

 

6. Conclusion and future work 
The present study aims to develop and validate a 

machine learning-enabled DTR-based SFP model 

that accurately predicts faults in software projects. 

The study involved a comprehensive review of the 

literature on SFP using soft computing techniques, 

revealing that a few studies have employed a similar 

dataset to implement SFP models. The study 

designed a metric suite that integrated existing 

process metrics and deployed Mr and Maas 

independent parameters. Mrdesigned using three 

process metrics (RC, RS, and RIW), while 

Madesigned using six process metrics (DTE, PM, 

CTE, DPF, TTE, and SI), with "predicted-faults" as 

dependent parameters. The metric suite underwent 

empirical validation through regression analysis and 

has been implemented using Python with a larger 

dataset. The performance measures AUC, precision, 

recall, F-measure, and accuracy for both Mr and Ma 

with fault were computed, and the results are 

presented in Table 5, confirming the efficacy of the 

suggested metric suite in predicting faults. The 

dataset underwent pre-processing as data cleaning, 

feature scaling, cross-validation, and hyper-parameter 

tuning before implementation of the suggested 

model. The DTR-based machine learning algorithm 

was used to design and implement the model, with 

Mr and Maas input or independent parameters and 

predicted-faults as outcomes or dependent parameter. 

The complexity of the suggested DTR-based SFP 

model is dependent on the different sizes of software 

projects, varying from 69.84% to 99.485% for 60 to 

180 software projects, as shown in Table 4. The 

interpretation of these results shows that the 

suggested SFP model works efficiently as software 

projects increase. The prediction results of the 
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suggested DTR-based SFP model have been 

compared with existing SFP models for a subset of 

20 software projects. The performance measures 

RMSE, NRMSE, MMRE, BMMRE, and R-Squared 

have been computed to verify and validate the 

suggested model using a larger dataset of software 

projects, and the results are shown in Table 7.The 

suggested DTR-based SFP model performs more 

accurately, with R-squared, RMSE, and MMRE 

values of 99.37%, 3.54, and 2.04E-05, respectively, 

compared to the existing ANFIS, FIS, and Bayesian 

net-based SFP models. The suggested DTR-based 

SFP model offers high accuracy for fault prediction, 

which can significantly reduce the cost, time, and 

effort required for software development. Our study 

provides a comprehensive and empirical approach to 

developing an efficient SFP model using machine 

learning. The suggested metric suite (Mr and Ma) can 

predict faults efficiently and be validated empirically. 

The findings of this study contribute to the 

development of SFP models and provide a practical 

and reliable tool for software development. 

 

Future research needs to evaluate the suggested DTR-

based SFP system for new datasets using a different 

classifier, such as CNN, DNN, or KNN. 
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Appendix I 
S. No. Abbreviation  Description 

1 ANFIS Adaptive Neuro Fuzzy Inference 

System 

2 ANN Artificial Neural Network 

3 AUC Area Under Curve 

4 BACO Binary Ant Colony Optimization 

5 BILSTM Bidirectional Long Short-Term 

Memory 

6 BGA Binary Genetic Algorithm 

7 BMFO Binary Moth Fire Optimization 

8 BMMRE Balanced Mean Magnitude of 
Relative Error 
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9 BPSO Bound Particle Swarm 
Optimization 

10 BR Bayesian Regularization  

11 CART Classification and Regression Tree 

12 CBO Coupling In Between Object 
Classes 

13 CBIL Hybrid Model of Convolution 

Neural Network 

14 CCM Cyclomatic Complexity Metric 

15 CE Cost-Effectiveness Measure  

16 CGA Clustering Genetic Algorithm 

17 CK Chidamber and Kemerer's 

18 CNN Convolution Neural Network 

19 CTE Coding Team Experience 

20 1D-CNN 1-Dimensional Convolutional 
Neural Network 

21 CV Cross Validation 

22 DDN Deep Neural Network 

23 DFCM Deep Fuzzy C-Mean 

24 DIT Depth of Inheritance Tree 

25 DPF Defined Process Followed 

26 DL Deep Learning 

27 DTE Design Team Experience 

28 DT Decision Tree 

29 DTNB Decision Table Naive Bayes 

30 DTR Decision Tree Regression 

31 FIS Fuzzy Inference System 

32 FS Feature Selection 

33 FS-EPwMD Feature Selection - Evolving 

Populations With Mathematical 
Diversification  

34 GM Geometric Mean 

35 HCM Halstead Complexity Metric 

36 JDT Java Development Tools  

37 KLOC Kilo Lines of Codes 

38 KNN K Nearest Neighbor 

39 LCOM Lack of Cohesion of Methods 

40 LDA Linear Discriminant Analysis 

41 LOC Line of Codes 

42 LR Logistic Regression 

43 L-RNN Layered Recurrent Neural 
Organization 

44 LSTN Long Short-Term Memory 

45 Ma Adoption-Based Metric 

46 MCDM Multi-Criteria Decision Making 

47 MMRE Mean Magnitude of Relative Error 

48 Mr Requirement Phase-Based Metric 

49 MRE Magnitude of Relative Error 

50 MSE Mean Square Error 

51 NRMSE Normalized Root Mean Square 

Error 

52 NB Naive Bayes 

53 NOC Number of Children 

54 OSS Open Source Software  

55 PART Partial C4.5 Rule Based Classifier 

56 PCA Primary Component Analysis 

57 PD Probability of Detection 

58 PDE Plug-in Development Environment  

59 PM Process Maturity 

60 PF Probability of False alarm 

61 RBFN Radial Basis Function Network 

62 RC Requirements Complexity 

63 RF Random Forest 

64 RFC Response for Class 

65 RIW Review, Inspection and Walk-
Through 

66 RMSE Root Mean Square Error 

67 RNN Recurrent Neural Network 

68 ROC Receiver Operating Characteristic 

69 RQ Research Question 

70 RS Requirements Stability 

71 SDLC Software Development Life Cycle 

72 SFP Software Fault Prediction 

73 SI Stake-Holders Involvement 

74 SVM Support Vector Machine 

75 TTE Testing Team Experience 

76 WMC Weighted Methods Per Class 

77 WOA Wrapper Algorithms 

78 XP Extreme Programming 

79 XP-TDD Extreme Programming-Test 

Driven Development 

 

 

Appendix II 
Sr. No. RS RC RIW DTE PM CTE DPF TTE SI Faults 

1 0.86 0.34 0.92 0.86 0.75 0.86 0.75 0.86 0.86 91 

2 0.8428 0.3332 0.9016 0.8428 0.735 0.8428 0.735 0.8428 0.8428 89.18 

3 0.825944 0.326536 0.883568 0.825944 0.7203 0.825944 0.7203 0.825944 0.825944 87.3964 

4 0.809425 0.320005 0.865897 0.809425 0.705894 0.809425 0.705894 0.809425 0.809425 85.64847 

5 0.793237 0.313605 0.848579 0.793237 0.691776 0.793237 0.691776 0.793237 0.793237 83.9355 

6 0.777372 0.307333 0.831607 0.777372 0.677941 0.777372 0.677941 0.777372 0.777372 82.25679 

7 0.761824 0.301186 0.814975 0.761824 0.664382 0.761824 0.664382 0.761824 0.761824 80.61166 

8 0.746588 0.295163 0.798675 0.746588 0.651094 0.746588 0.651094 0.746588 0.746588 78.99942 

9 0.731656 0.289259 0.782702 0.731656 0.638072 0.731656 0.638072 0.731656 0.731656 77.41944 

10 0.717023 0.283474 0.767048 0.717023 0.625311 0.717023 0.625311 0.717023 0.717023 75.87105 

11 0.702683 0.277805 0.751707 0.702683 0.612805 0.702683 0.612805 0.702683 0.702683 74.35363 

12 0.688629 0.272249 0.736673 0.688629 0.600549 0.688629 0.600549 0.688629 0.688629 72.86655 

13 0.674856 0.266804 0.721939 0.674856 0.588538 0.674856 0.588538 0.674856 0.674856 71.40922 

14 0.661359 0.261468 0.707501 0.661359 0.576767 0.661359 0.576767 0.661359 0.661359 69.98104 

15 0.648132 0.256238 0.693351 0.648132 0.565231 0.648132 0.565231 0.648132 0.648132 68.58142 

16 0.635169 0.251113 0.679484 0.635169 0.553927 0.635169 0.553927 0.635169 0.635169 67.20979 

17 0.622466 0.246091 0.665894 0.622466 0.542848 0.622466 0.542848 0.622466 0.622466 65.86559 

18 0.610017 0.241169 0.652576 0.610017 0.531991 0.610017 0.531991 0.610017 0.610017 64.54828 

19 0.597816 0.236346 0.639525 0.597816 0.521351 0.597816 0.521351 0.597816 0.597816 63.25732 



International Journal of Advanced Technology and Engineering Exploration, Vol 11(113)                                                                                                             

623          

 

Sr. No. RS RC RIW DTE PM CTE DPF TTE SI Faults 

20 0.58586 0.231619 0.626734 0.58586 0.510924 0.58586 0.510924 0.58586 0.58586 61.99217 

21 0.34 0.63 0.75 0.15 0.75 0.34 0.75 0.34 0.34 373 

22 0.3332 0.6174 0.735 0.147 0.735 0.3332 0.735 0.3332 0.3332 365.54 

23 0.326536 0.605052 0.7203 0.14406 0.7203 0.326536 0.7203 0.326536 0.326536 358.2292 

24 0.320005 0.592951 0.705894 0.141179 0.705894 0.320005 0.705894 0.320005 0.320005 351.0646 

25 0.313605 0.581092 0.691776 0.138355 0.691776 0.313605 0.691776 0.313605 0.313605 344.0433 

26 0.307333 0.56947 0.677941 0.135588 0.677941 0.307333 0.677941 0.307333 0.307333 337.1625 

27 0.301186 0.558081 0.664382 0.132876 0.664382 0.301186 0.664382 0.301186 0.301186 330.4192 

28 0.295163 0.546919 0.651094 0.130219 0.651094 0.295163 0.651094 0.295163 0.295163 323.8108 

29 0.289259 0.535981 0.638072 0.127614 0.638072 0.289259 0.638072 0.289259 0.289259 317.3346 

30 0.283474 0.525261 0.625311 0.125062 0.625311 0.283474 0.625311 0.283474 0.283474 310.9879 

31 0.277805 0.514756 0.612805 0.122561 0.612805 0.277805 0.612805 0.277805 0.277805 304.7682 

32 0.272249 0.504461 0.600549 0.12011 0.600549 0.272249 0.600549 0.272249 0.272249 298.6728 

33 0.266804 0.494372 0.588538 0.117708 0.588538 0.266804 0.588538 0.266804 0.266804 292.6993 

34 0.261468 0.484484 0.576767 0.115353 0.576767 0.261468 0.576767 0.261468 0.261468 286.8454 

35 0.256238 0.474794 0.565231 0.113046 0.565231 0.256238 0.565231 0.256238 0.256238 281.1084 

36 0.251113 0.465299 0.553927 0.110785 0.553927 0.251113 0.553927 0.251113 0.251113 275.4863 

37 0.246091 0.455993 0.542848 0.10857 0.542848 0.246091 0.542848 0.246091 0.246091 269.9765 

38 0.241169 0.446873 0.531991 0.106398 0.531991 0.241169 0.531991 0.241169 0.241169 264.577 

39 0.236346 0.437935 0.521351 0.10427 0.521351 0.236346 0.521351 0.236346 0.236346 259.2855 

40 0.231619 0.429177 0.510924 0.102185 0.510924 0.231619 0.510924 0.231619 0.231619 254.0998 

41 0.15 0.63 0.75 0.86 0.75 0.34 0.5 0.63 0.63 90 

42 0.34 0.15 0.92 0.34 0.75 0.86 0.75 0.34 0.86 204 

43 0.3332 0.147 0.9016 0.3332 0.735 0.8428 0.735 0.3332 0.8428 199.92 

44 0.326536 0.14406 0.883568 0.326536 0.7203 0.825944 0.7203 0.326536 0.825944 195.9216 

45 0.320005 0.141179 0.865897 0.320005 0.705894 0.809425 0.705894 0.320005 0.809425 192.0032 

46 0.313605 0.138355 0.848579 0.313605 0.691776 0.793237 0.691776 0.313605 0.793237 188.1631 

47 0.307333 0.135588 0.831607 0.307333 0.677941 0.777372 0.677941 0.307333 0.777372 184.3998 

48 0.301186 0.132876 0.814975 0.301186 0.664382 0.761824 0.664382 0.301186 0.761824 180.7118 

49 0.295163 0.130219 0.798675 0.295163 0.651094 0.746588 0.651094 0.295163 0.746588 177.0976 

50 0.34 0.05 0.75 0.63 0.75 0.63 0.75 0.63 0.63 196 

 


