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1.Introduction 
Potatoes are a staple food for millions globally, 

particularly in regions where they are a primary source 

of calories and nutrients. Diseases affecting on potato 

leaf diseases represent a multifaceted challenge with 

implications ranging from economic stability and food 

security to environmental sustainability [1]. 

Addressing these challenges requires a holistic 

approach that integrates scientific research, 

technological innovation, and sustainable agricultural 

practices to ensure the resilience and productivity of 

potato crops in the face of disease pressure. 

 

 

 

 
*Author for correspondence 

The United Nations Food and Agriculture 

Organization (FAO) statistically reported that potato 

cultivation spans 157 countries globally, covering a 

collective lodging zone of 19.46 million hectares and 

yielding approximately 370 million tons annually [1]. 

Yet, crop diseases hinder crop production, particularly 

in emerging nations like Bangladesh. Despite 

momentous advancements in farming procedures and 

technology, the risks of crop diseases continue, as well 

as disheartening efforts to increase yields and ensure 

food security [2]. The potato industry in the region has 

experienced substantial growth, reaching a 

considerable measurement of over 27,811.6 tons 

between 2013 and 2014, establishing itself as the 

fourth most extensive crop worldwide. Nevertheless, 

it confronts significant trials from disorders such as 

potato tuber moth, brown rot, and vital blight-infected 
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diseases are caused by various pathogens, including fungi, bacteria, viruses, and nematodes, which can infect various plant 

parts, including leaves, stems, roots, and fruits. Classifying the several crop diseases is the requirement for the prevention 

of distinct disease problems. However, it is challenging to detect exact crop diseases that cause slight differences among the 

diseases of the same crop. Meanwhile, multi-layer convolutional neural networks, while effective in daily computer vision 

tasks, come with drawbacks such as significant computational memory requirements and extended training times. The 

simplified convolutional neural network (SCNN) model comprises three hidden layers with increasing order in each 

convolution kernels 16, 16, and 32, reducing the time and space complexity. This study incorporates normalization, dropout, 

and regulation techniques to accelerate training merging and enhance accuracy. Then, the performance metrics are found, 

and distinct algorithms are compared to measure the effectiveness of the top-performing model. The investigational 

comparisons among the projected SCNN model and others revealed that the planned SCNN model offers the uppermost 

accuracy. Furthermore, the SCNN outcome is applied to actual crop image datasets, achieving a classification accuracy of 

95.69%. Above all, the planned SCNN model demonstrates promising results in potato blight disease classification, offering 

high accuracy while mitigating the computational memory requirements and training time. These findings suggest its 

potential applicability in real-world agricultural scenarios for efficient crop disease detection and prevention.  

 

Keywords 
Neural networks, SCNN, Potato blight disease, Crop diseases, VGG-16, ResNet-18. 

 

Research Article 



Md. Ashikur Rahman Khan et al. 

820 

 

fungicidal, leading to losses ranging from 25% to 

57%. Over three years, the agronomy of potatoes has 

witnessed a decline of 70,000 hectares, with 

cultivation areas dropping from 4.64 lakh hectares in 

the fiscal year 2021-22 to 4.55 lakh hectares in 2022-

23 and further to 3.93 lakh hectares in 2023-24[3]. 

 

Figure 1 visually illustrates the impact of early-

indicated blight leaves and late blight on potato plants 

in this context. The black spots caused by early 

affected blight are shown in Figure 1(a). Late blight 

and damage to leaves are depicted in Figure 1(b). 

Similarly, the Plant-village potato early infected leaf is 

shown in Figure 1(c), and severe lesion damage on late 

blight is shown in Figure(d). The same dataset of other 

crops of tomatoes with early irregular spots is shown 

in Figure (e), and the severely affected lesion spot is 

shown in Figure (f). 

 

  
                (a) Early                                 (b) Late 

Own dataset(Affected Potato Blight Leaves) dataset 

  
             (c) Early   (d) Late 

Plant-Village (Affected Potato Blight Leaves) dataset 

   
                  (e) Early                                  (f) Late 

Plant-village (Affected Tomato Blight Leaves) dataset 

Figure 1 Example pictures of Plant-Village dataset 

and own dataset 

 

Late blight infection in potatoes is caused by the 

pathogen Phytophthora infestans, a shocking illness on 

potato foliage and tubers, leading to rapid defoliation 

and decay [4]. Also, early blight, characterized by 

small dark spots on mature leaves that range from 3-8 

inches and have contoured shapes, is one of these 

challenges. BARI Alu-73 and BARI Alu-72 (potato) 

are widely used varieties in Bangladesh and are 

susceptible to these diseases. In light of these 

challenges, there is a need for innovative approaches 

to disease surveillance, prevention, and management 

in potato cultivation. By addressing the complex 

interplay of socio-economic, environmental, and 

technological factors influencing crop health, 

stakeholders can work towards building a more 

sustainable and resilient potato industry in Bangladesh 

and beyond.  

 

Creating a model to detect potato blight is crucial in 

mitigating its impact on yield levels. Automating this 

detection process eliminates the need for manual 

feature extraction, enabling early disease monitoring 

and prevention. Such a strategy holds significant 

practical value in improving potato yields, cutting 

production costs, and boosting overall revenue. The 

pressing need to address the challenges posed by crop 

diseases in potato cultivation, particularly in 

Bangladesh, has motivated the exploration of 

techniques that can significantly reduce the costs of 

finding damaged plants early on. Convolutional neural 

networks (CNNs) have garnered significant interest 

within the agricultural domain due to their prevalent 

application in various areas. These include tasks, for 

example, plant-based detection [5], fruit variety 

identification [6], disease data diagnosis [7], weed 

image detections [8], pest data recognition [9], and so 

on. The models based on CNN are appreciated for their 

capacity to extract pertinent features from datasets 

automatically. While deep learning (DL) pre-trained 

models like visual geometry group networks 

(VGGNet) [10], AlexNet [11], GoogleNet [12], 

ResNet [13], and DenseNet [14] have been established 

for vegetable disease credentials, their great quantity 

of parameters and computational charge [15] position 

challenges for implementation on small processor 

devices such as android, iOS tablet, etc. with limited 

resources and dataset. Thus, there is a growing need 

for less timing detection, lower number parameters, 

and low-power consumption dl applications in 

agriculture. 

 

A modified version of the CNN architecture was 

proposed, featuring three hidden layers, to improve the 

efficiency of feature extraction while reducing 

computational complexity in diagnosing plant 

diseases. Under varying conditions, it evaluates the 

model's effectiveness across diverse datasets, 

including public repositories and newly gathered data. 

The proposed architecture abstracts improved features 

using consecutive three convolutions with batch 

normalization of 3×3 for each filter size. The 

vanishing gradient issue was addressed using standard 

small sequence Convolution, which minimizes the 
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computational complexity and parameter size without 

impacting performance. The model was practiced 

using three crop datasets, including its own set, and the 

robustness of the model performances was evaluated 

graphically and using metrics. The datasets for tomato 

and potato plants early consisted of ailments and late 

blight disease obtained from public storage (Plant-

Village repository) dataset used; in this study, images 

were captured under consistent backgrounds and 

laboratory setup conditions while photos were taken. 

A notable role in image background noise and image 

quality affects model accuracy. It provides a beneficial 

role, as single channel image conversion from RGB in 

the image pre-process section is applied. The survey 

plant dataset was captured in real-time field 

conditions, and images cover augmentation. This work 

evaluates the proposed model's performance on three 

separate datasets against other cutting-edge models. 

The upshot determines that our recommended 

simplified convolutional neural network (SCNN) 

model performs better than other these types of 

models.  

 

The paper's primary contribution is the model's 

efficacy, evaluated by confusion matrices predicted 

and actual values from true (positive, negative) and 

false (positive, negative) and other matrices among 

accuracy, recall, precision, and F1-score. This study 

focuses on pre-trained models, which contain more 

extensive layers but generate better results. Our top-

performing method consistently delivers an accuracy 

of over 95.69% for all data gathered.  

 

This paper is organized as follows: Section 2 discusses 

the related work. Section 3 describes the materials and 

methods. Section 4 presents the experimental findings, 

while Section 5 offers discussions. Finally, Section 6 

provides a detailed conclusion and explores the future 

prospects of this research. 

 

2.Related works 
This section summarizes recent research on 

documenting crop diseases using deep neural 

networks (DNNs). DNNs are employed to accurately 

identify and classify various crop diseases, aiding 

farmers in timely intervention and management 

practices.  

 

DL spreads have exhibited encouraging results in 

spotting and categorizing lesions in digital images, 

according to Siddiqua et al. (2022) and Wang et al. 

(2022). These replicas can autonomously grasp image 

structures, pinpointing even the subtlest disease 

indicators that conventional image processing 

techniques might overlook. However, the latest dl 

requires ample labeled training data and substantial 

computational resources, posing potential constraints 

for specific applications [16, 17]. 

 

Using both learning from scratch and transfer learning 

models, Mohanty et al. [8] identified 26 illnesses 

affecting 14 plant species using AlexNet and 

GoogleNet. They reached their maximum accuracy 

with GoogleNet, which was 99.34%. Similarly, these 

techniques are extensively employed for detecting 

diseases like greenery blotch, powdery mildew, and 

rust as indications of abiotic stresses such as drought 

and nutrient deficiency [18]. Nevertheless, they face 

constraints in accurately discerning subtle disease 

symptoms and detecting diseases in their early stages. 

In addition, they need help in handling intricate and 

high-resolution images. 

 

Genaev et al. [19] used a you only look once version 4 

(YOLOv4)-tiny algorithm to sorting fruit flies by 

gender in images. The model could identify with an F1 

value of 0.838, favorably related to the judgment of 

skilled crop inspectors. To find 58 plant leaf illnesses, 

Ferentinos [20] employed five distinct pre-trained 

methods outcomes on dl which encompass 60M 

parameters AlexNet, classifier AlexNetOWTBn, 

VGG and the classifier GoogleNet, the authors stated 

a prediction accuracy of more than 99%. A deep (9 

layers) CNN twisted by Geetharamani and Pandian 

[21] used AlexNet and GoogLeNet and successfully 

identified plant diseases 96.46% of the time. Here, the 

work, parameters, and layer numbers are 

computationally complex.  

 

Chambon et al. [22] focused on classifying mineral 

deficiencies in rice, utilizing digital image processing 

and neural networks with texture and color features. 

With an accuracy of 88.56%, their approach 

demonstrates versatility by effectively categorizing 

blast and brown spot diseases. It highlights the 

efficacy of their method in addressing multiple disease 

types, underscoring its potential for broad application 

in agricultural settings. These studies underscore the 

potential of digital image processing and learning in 

diagnosing and managing rice crop health, aiding 

agricultural efforts. 

 

Ahad et al. reported that the CNN architectures for 

classifying rice diseases achieves a 98% accuracy in 

detecting and pinpointing leaf disease locations in rice 

plants [23]. Another research on CNN achieved an 

accuracy of 96.09% for potato leaves infected by early 
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and late blight [24] and healthy leaves, and the model 

can be utilized for Android mobile devices [25]. 

 

Additionally, studying rice plants using a VGGNet 

construction, Chen et al. [26] performed the 

arrangement of rice plant diseases. Chen et al. [27] 

also projected a CNN model, namely the MobileNet 

Beta edition, by covering a pre-build trained 

MobileNetV2 model to detect plant diseases. Ahmad 

et al. [28] employed the most extensive dataset-trained 

neural network architectures, including VGGNet 

versions, ResNet, and InceptionV3, with InceptionV3 

achieving 99.60% accuracy in laboratory settings and 

93.70% in field images for tomato leaf recognition. 

Krishnaswamy and Purushothaman [29] utilized red 

green blue (RGB) photos, a pre-build VGG16 model, 

and multi-class support vector machine (SVM) to 

identify eggplant diseases, achieving a supreme 

accuracy of 99.4%. Kumar and Domnic [30] enhanced 

various pre-trained neural network models using 

DenseNet, a determined testing accuracy of 99.75%. 

Rangarajan and Raja [31] employed six pre-trained dl 

architectures to identify ten illnesses across four plant 

types, with VGG16 obtaining an accuracy value of 

90% on the tested images. Acharya et al. [32] utilized 

InceptionV3 to identify crop illness, noting higher 

accuracy; they far ahead employed InceptionV3 to 

identify paddy crop diseases, achieving accuracies of 

95.54%. Sethy et al. [33] applied deep features and 

SVM for diagnosing rice leaf diseases, with the 

ResNet50 model achieving an f1-score of 98.38%. 

Shah et al. [34] used dl ResNet50 model with 

promising accuracy for f1 score 99.75% for rice 

leaves. Deep residual neural networks outperformed 

simple CNN in identifying cassava disease, according 

to Oyewola et al. [35]. Picon et al. [36] work multiple 

residual neural networks with 50 layers, batch 

normalization, and rectified linear unit (ReLU) 

activation to identify wheat diseases, achieving 96% 

accuracy on real-time field photos. Li et al. [37] 

diagnosed tomato leaf diseases using a modified CNN 

model, namely multi-scale local and global feature 

representation with convolutional neural network 

(MFRCNN), with accuracy for laboratory and field 

datasets of 99.01% and 98.75%, respectively. Hu et al. 

[38] enhanced accuracy to 92.5% by using a modified 

Cifar10 fast CNN model with depth-wise separable 

convolution for tea leaf disease identification. To 

identify various corn and rice diseases, Chen et al. [39] 

joined the pre-build networks (VGGNet) with an 

inception layer (INC-VGGN), having average testing 

accuracies of 92% for rice diseases and 80.38% for 

corn diseases. On a public dataset at Kaggle Plant-

Village dataset, Atila et al. [40] utilized EfficientNet 

architecture, surpassing traditional CNN models like 

AlexNet and VGG with an accuracy value of 99.97% 

with an EfficientNet-B4 networks model. To detect 

illnesses in corn and apples, Hassan et al. [41] 

deployed a shallow CNN based on the first few layers 

of the VGG16 model, achieving an accuracy of 94%. 

Zeng et al. [42] suggest a self-attention CNN model to 

imprison meaningful structures from plant disease 

spots, facilitating the identification of crop diseases. 

The instances above illustrate the potential of 

employing RGB images at the leaf level within the 

computer vision basis for identifying crop diseases. 

Yet, effectively training models for image recognition 

demands a specific volume of annotated images 

captured under diverse conditions, times, and 

locations to ensure dependable predictions. 

Annotating images necessitates significant effort 

according to time and expertise; hence, the need for 

annotated images poses a constraint on the technique 

[43]. Moreover, challenges emerge from the worth of 

the pictures utilized to train the model; subpar 

resolution or insufficient annotation may diminish 

accuracy. 

 

Many prior studies encountered challenges with data 

and methodology, resulting in subpar outcomes. Our 

research addressed these issues by integrating 

techniques such as fine-tuning dropout, adjusting 

batch sizes, and exploring different architectural 

approaches with trained features, labels, and neurons. 

Including three hidden layers helped streamline 

feature extraction complexity while processing data by 

cropping pictures, which bolstered dataset diversity 

and simplified complexity.  These methodological 

refinements allowed us to overcome previous hurdles 

and improve the robustness and effectiveness of our 

approach. 

 

3.Methodology 
The primary focus of SCNN is to advance a 

programmed and precise network model for predicting 

potato variety (BARI Alu-73 and BARI Alu-72) 

blight ailments. The experiments took place on Google 

Colab, utilizing the Keras v3.0.5 and TensorFlow 

v2.15 libraries, recognized as one of the premier 

Python v3.7.17 libraries for dl, and facilitated the 

implementation of dl techniques. Throughout the 

study, models including original, transfer learning pre-

trained model, and using the NVIDIA GeForce RTX 

3050 Ti graphics processing unit (GPU) available on 

Google Colab where GPU consists of 12GB RAM and 

360 GB in the cloud storage collaborative services 

were trained. The SCNN methodology consists of 

several essential steps, including assembly of survey 
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data, manual and software processing data, pre-

processing data, dl techniques, training and testing, 

performance analysis, and comparative analysis. 

These steps are essential in achieving the research 

objective. This section discusses utilizing and 

implementing various prior-trained network learning-

based models for potato variety disease prediction. 

The entire research process is described in a step-by-

step manner. The analysis of the blight disease forecast 

is summarized in Figure 2. Pictures of leaves are 

gathered, analyzed, and then saved in the researcher's 

cloud. Before the model is trained, the data is then pre-

processed, standardized, and shuffled. After this, the 

trained model undergoes evaluation and 

normalization, with the normalized data employed to 

validate the outcomes. The ultimate selection of the 

disease prediction model occurs upon achieving 

satisfactory consequences compared to other models 

in the training, testing, and validation phases, ensuring 

no overfitting issues. 

 

3.1Compilation and preparation of data 

The initial phase of model development focuses on 

data collection and analysis. A dataset comprising 

approximately 4000 images was gathered. The data 

selected location was explicitly from the Noakhali 

Science and Technology University Garden, which is 

positioned in Noakhali, Bangladesh, at 22.7916° N 

and 91.1028° E. The data acquisition process involved 

physically placing individual potatoes and capturing 

images using diverse smart devices, including 

Samsung Galaxy A7, iPhone version 6 and 10, and 

Nokia 6, encompassing both platforms between 

android and iOS. To tackle the difficulty of 

distinguishing between late and early blight infection 

during the initial stages of potato disease, the Potato 

Leaves Virus Dataset was developed in 2022, 

comprising images of both diseased conditions. The 

leaves were selected by Ferdousi Begum, an 

agriculture expert who has been harvesting vegetables 

since an early age. Jesmin Akther and an expert farmer 

also cooperated to distinguish and label early and late 

blight-infected leaves in the information and 

communication Engineering (ICE) laboratory. In the 

early blight, leaves exhibited small dark green spots, 

which were circular to irregular in shape, and leaves 

became yellow in color [11]. Conversely, late blight 

leaves retained moisture at the edges or tips, resulting 

in lesions of up to 3/8 diameter, exhibiting dark brown 

to black colors and undergoing rapid destruction [24]. 

These images were taken under the same weather 

conditions, including consistent shooting distance, 

lighting, and sunny and gloomy environmental 

background, ensuring clear visibility of the leaves and 

their disease spots against the backdrop. Then, 

manually grouped leaves into training, testing, and 

validation datasets. Again, each group divided into 

two, namely early blight and late blight, then began to 

capture all the leaves. Photos with poor clearness or 

evident inscriptions were removed by hand to maintain 

high picture resolution. Additionally, images featuring 

many pictures were cropped to retain the dataset's 

emphasis on individual leaves and the disease's 

physical appearance. The resulting dataset 

incorporates surveys conducted for potato blight 

disease, as shown in Figure 3. 

 

 
Figure 2 Workflow diagram of the potato blight 

disease prediction model 
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Figure 3 Field survey with the manual process of potato leaves 

 

Each device's images are in joint photographic group 

(JPG) format and belong to the RGB color space. The 

CNN applied in this training operates with the exact 

specifications, including dimension, size, feature, and 

color [14]. 

 

Two tools are utilized for processing the raw images: 

an online web application called bulk-

resizephotoes.com and the Microsoft Windows 10 

default system application. These tools adjust the 

images to a standardized size compatible with each 

model, including our SCNN, size of 230×230, and 

save them in JPG format without introducing any 

noise. Due to hardware limitations, this study resizes 

input image resolutions for all models. Consequently, 

set the input size for all models to 230 × 230 to ensure 

uniform evaluation conditions across all models. 

 

The photos are stored online in cloud storage for data 

pre-processing and avoiding physical memory. After 

experimentation, this is determined that Google 

Collaboratory could support a maximum data size for 

training the model. GPU support simultaneously saves 

run time. Two classes of samples are created: one for 

training and one for testing. Two directories called 

"Early Blight" and "Late Blight" are formed within 

these classes. The model is then used to assess the 

testing results. One thousand early and 1000 late blight 

photographs make up the training class. Further details 

on digital image and signal processing can be found by 

Hong et al. [44]. 

 

In the initial stage, the dataset images are plotted and 

examined for their size, ensuring they are 230× 230 

resolution for smooth compilation of data in a short 

time. Furthermore, make sure that the features of the 

images are apparent to the naked eye. Following 

Figure 4, it is clear that 100×100 is not clear visually 

at a time when the original resolution impacts run-

time. This procedure is conducted through Python 

programming in Google Colab to reduce size and 

maintain data quality. 70×70 size has a better impact 

than tested other dimensions and original input 

resolution. Thus, the dataset is converted into an image 

array of size 70×70 and imported in a 

monochromatic(single-channel) format utilizing 

libraries like OpenCV and Matplotlib. It has also been 

verified that there are no duplicate images within the 

dataset. 

 

The data is indexed and treated as a directory list of 

categorical values to commence the training process. 

Since the data includes all early blight images 

followed by all late blight images, The data is 

rearranged using the random library. Kinsley [45] 

depicts the training data as an array and mixes data by 

importing a shuffle library to blend the trained data. 

Imagine a convolutional layer split into ‘p’ groups, 

resulting in an output of pxn containing channels. At 

first, we reconfigure the output's channel dimension 

(px) to a predetermined setup, then transpose it before 

flattening it, preparing it to be the input for the 

following layer. The specified index value indicates 

the validity outcome as either 0 or 1. 

 

Preceding the CNN deployment, the cloud archives 

the features and labels for each image to train the 

SCNN model. A Python function is formulated for 

reshaping the image array; the conversion between 

grayscale to image array visually plots the image 

feature to decide the minimum smaller size image 

array that undermines complexity, where Gray-Data = 

image array * (-1, 70, 70, 1) as seen in Figure 4. The 

final digit, 1, signifies the grayscale nature of the 

images to speed up processes which were 3 in input 

images. Following the reshaping of features, features 

and labels are normalized per image by dividing each 

pixel value by 255 by Ramya et al. [46]. A check is 

performed on the resized image array by comparing 

the output with 50× 50 and 70× 70 sizes. The resizing 

of the image array is visually displayed in Figure 4. 

 

Following the above Figure 4(a) the normal RGB 

leaves with 230 height and weight, to speed up process 
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convert this Figure 4(b) RGB to Gray colour having 

230 height and weight, to achieve visual affects with 

minimum size convert into three different dimension 

such as in Figure 4(c), (d) and (e). Considering both 

sizes and visualization among these images selected 

Figure 4(d) as the final resize and reshaping data. 

 

     
(a) is 230×230 RGB is 

3 channel 

(b) is 230×230 with a 

color map of Gray 

(c) is 100×100 with a 

color map of Gray 

(d) is 70×70 with a 

color map of Gray 

(e) is 50×50 with a 

color map of Gray 

Figure 4 Image channel modification 

 

Achieving optimal performance for the classification 

algorithm requires data normalization. The 

minimum(min) and maximum (max) normalization 

method is utilized, where the min cost of each feature 

is converted to 0, the max price is converted to 1, and 

all other values are scaled to a decimal between 0 and 

1. Image quality and consistent background affect 

model beneficial accuracy. We must also not 

normalize our dataset to avoid losing the information 

contained within highly valued features that will affect 

final performance metrics undesirably. Therefore, the 

data normalization method is expressed as surveys as 

shown in Equation 1: 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥.−min (𝑥.)

max(𝑥.)−min (𝑥.)
  (1) 

 

Xnormalized is represented as the newly normalized 

cost. 

 

3.2Training, testing and validation 

The data is separated among classes, namely training, 

validation, and testing categories, as outlined in Table 

1. The training set is essential for acquainting the 

model with the data's inherent features, encompassing 

diverse inputs to enable training datasets across 

various scenarios and ensure adaptability to predict 

future samples. Simultaneously, the validation set 

evaluates the model's performance during training, 

aiding in refining its configurations. After every 

epoch, the model is trained with the training dataset 

and evaluated using the validation dataset, preventing 

overfitting and enhancing its capacity to take a broad 

view of unused samples.  

 

Finally, the test set evaluates the model's post-training 

performance, providing a final assessment of its 

accuracy and precision. 

 

Table 1 Percentage of data 
Dataset Portion 

Training  70% 

Testing 15% 

Validation 15% 

 

The research employs various dl techniques, namely 

Inceptionv1, ResNet18, and VGG16 pre-trained 

models. The models are trained using 70% of the 

dataset [24], while data validity is essential for 

assessing performance without overfitting problems 

and fine-tuning the model [11]. Dropout regularization 

and reducing architecture complexity in limited layers 

increase the model's performance. 

 

3.3Train data 

Early blight photos and late blight images make up 

both classes of training data at this level. The training 

speed for the early blight class is 1.86 images per 

second (IT/S), while for the late blight class, the 

training speed is 2.66 IT/S using the GPU [23]. The 

GPU capably operated the situation memory for a fast-

tracked picture group, warehoused in a frame buffer 

designed for display output. In this circumstance, the 

data training was performed on a computer. The 

configuration is an Intel Core i7 processor 6th 

generation, 8GB DDR3 RAM, 64-bit Windows 10 

operating system, and the device display is 15 inches. 

In short, the GPU accelerates the image creation 

process by modifying the memory to facilitate output 

to the laptop display device, as depicted in Figure 5. 
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100%|██████████|1000/1000 [00:16<00:00, 

59.56it/s]  
100%|██████████| 1000/1000 [00:17<00:00, 

57.51it/s] 

Figure 5 Train Data time per iteration of each class 

 

The training process involves 59.56 iterations for each 

class, resulting in a total of 2,000 samples being 

trained. The Shuffle library is brought in to mix the 

trained data. The deployment of the CNN utilizes the 

list of training data. Randomizing the data after 

training is a critical step for achieving better clarity 

and accuracy. 

 

3.4Deploy CNN 

This approach utilizes the sequential model from 

Chico and Sallow [47], along with the Adam optimizer 

for training. The model includes two convolutional 

layers added with a ReLU activation function each 

time, taking RGB images as input with a shape of (64, 

64, 3). For downsampling, max-pooling layers with a 

dimension of 2 by 2 are added. Other pooling 

techniques, min pool and average pool, are fewer fast 

processes in the work. The feature maps are flattened, 

and a wholly connected node layer with an activation, 

specifically ReLU, is introduced. An output layer 

adding an activation function, SoftMax, is integrated 

to produce class probabilities. Elements defining the 

architecture, such as the input shape, number of filters, 

pooling sizes, and dense layer units, are adjusted based 

on our specific dataset. After only three epochs, an 

achieved validation accuracy of 78% is noted. 

Nevertheless, it is necessary to rerun the CNN 

deployment, train on 2100 samples, and validate on 

900 samples for enhanced validation accuracy. A 30% 

piece of the data is set aside for validation, while the 

remaining 70% is used for accuracy testing. It is 

significant to highlight that additional study is 

necessary; hence, the model shown here is not the final 

model. The training values and testing cost outcomes, 

including accuracy matrices and loss line process, are 

illustrated in Figure 6. 

 

 
                                          (a) Accuracy Process                                                         (b) Loss Process 

Figure 6 Accuracy value graph with loss 

 

Figure 6(a) shows validation accuracy is almost 

accurate with training accuracy, which means training 

accuracy is above 80% after three epochs. Figure 6(b) 

horizontal axis for epoch and vertical for loss in 

percent unit. Training loss is blue and red for 

validation loss, which shows 75%. The more 

minimalized the loss, the more the data gets validated. 

Training loss is 40%, and validation loss is nearly 50% 

after three epochs. 

 

Since the initial accuracy of the model did not meet 

our expectations, we conducted a thorough analysis to 

identify areas for improvement and made 

optimizations to the model. 

 

3.5Deep learning (DL) Techniques 

Here, this research work gives the blight disease 

prediction model sample utilized in the suggested 

system in the DL techniques section, as depicted in 

Figure 2. Starting the process with internet and GPU 

maintenance gives authorization for personal cloud 

storage. The dataset is then loaded into Google Colab 

for further processing. The dataset is subjected to pre-

processing operations like normalization (Decrease 

the prominence of one characteristic compared to the 
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rest), shuffles, and training. Data is subsequently 

provided into the DL methods used in this technique. 

Three pre-trained DL classification models are used 

for comparative analysis. 

 

A. VGG-16 

The University of Oxford's VGG developed the 

multiple CNN design known as VGG16 Simonyan and 

Zisserman [14], which consists of 16 layers. It has 

become well-known for its efficiency and simplicity in 

picture categorization jobs. The model's input layer 

accepts photos with the coordinates (224, 224, 3). It is 

completed in several convolutional stages, combined 

with convolutional layers and then max pooling. 

VGG-16 uses ReLU activation, 3×3 size filters per 1 

stride, and 13 conv layers are convolved with five 

pooling(max-pooling) layers. The layers with pooling 

reduce spatial dimensions while preserving local 

spatial information. The final fully connected layers 

accomplish high-level feature extraction and class 

predictions. VGG-16's strength lies in its deep 

architecture and consistent design, utilizing stacked 

smaller filters to capture intricate features. However, 

its large number of parameters makes it 

computationally expensive. Nevertheless, VGG-16 

has been widely involved and assists as per a 

benchmark for processor vision tasks, showcasing 

exceptional performance in image classification and 

object recognition. The model shows satisfactory 

outcomes for the new dataset where the complexity 

lies in time and the number of parameters. 

 

B. ResNet-18  

The deep neural network (DNN) ResNet-18 is a 

shallow modification of the ResNet network 

architecture introduced by He et al. [48]. It consists of 

18 layers and has an impressive presentation in 

classification(image) tasks. The model architecture 

includes an input layer that accepts images of shape 

(224, 224, 3). Four residual blocks are placed after the 

initial convolutional block, each incorporating two 

convolutional layers, batch normalization with 

function ReLU activation. Each residual block's top 

layer down samples the spatial dimensions. The 

average pooling layer then receives the feature maps 

obtained from the final residual block, reducing their 

spatial dimensions. The output layer, which generates 

the class predictions, is liable to the class number by a 

fully networks connected layer. ResNet-18 

characteristic is the use of skip or residual connections. 

These connections enable more accessible training of 

deep networks by allowing the gradients to flow 

directly, addressing the problem of vanishing 

gradients. Despite its relatively shallow architecture, 

ResNet-18 has confirmed robust performance in 

various image classification benchmarks. Its 

simplicity and effectiveness make it a popular choice 

for tasks where a balance between model depth and 

computational resources is desired. When we applied 

the novel dataset, it showed some dataset training 

faults as more and more layers were added. To 

mitigate the issues, we added a stack of convolutional 

layers with a MaxPool layer in the SCNN model; as a 

result, the computational cost of input became less. 

 

C. Inception v1 or GoogLeNet 

Inception v1 is primarily a deep 27-layer CNN worked 

by Oyewola et al. [35], Lee and Dernoncourt [49]. 

Convolution, maxpool, two sequential blocks for 

inception (3a), and inception (3b), followed by another 

max-pooling, inception(4a) block, another 

inception(4b), again inception(4c), five sequential 

blocks for inception(4d), inception(4e). Additionally, 

there's another max pool, two sequential blocks for 

inception(5a) block, and inception(5b). The average-

pooling layer, dropout (40 percent), linear, and 

softmax layers are the key features of the model. It was 

much smaller than the then-prevalent models like 

VGG and AlexNet. Inception Layer [49] is consisted 

of all of those layers (11 Layer of Convolutional, 33 

Layer of Convolutional, and 55 Convolutional Layer), 

with their production filter groups cut into a single 

yield vector that serves as the input proceeding to the 

subsequent stage. The mentioned layers have two 

noteworthy additions in the initial inception layer: (1) 

11 Convolutional layers primarily used for 

dimensionality reduction before introducing another 

layer. (2) A parallel Max Pooling layer broadens the 

selections available within the inception layer. The 

error rate in Inceptionv3 was reduced to just 4.2%. 

Each epoch now takes approximately a quarter of the 

time compared to VGG16 [11]. In short, Inception 

networks were proven efficient regarding 

computational resources and parameter count. Yet, 

their limitation arises from their restricted flexibility to 

novel use cases and applied new datasets. 

 

D.Proposed simplistic convolutional neural 

network (SCNN) approach for identification of 

potato (bari alu-72,73) leaves blight affects 

Figure 7 demonstrates the structure of SCNN for this 

investigation. It has three consequent convolutional 

and three pooling layers. The input image set is 

converted into a trainable three-dimensional (3D) 

filter set by convolving each convolutional layer, 

which is important. Pooling layers are employed to 

lessen the feature map dimension and remove 

redundant information, which means downsampling. 
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The network architecture integrates three layers for 

multiple purposes, including reducing parameter 

complexity and preventing overfitting. This is one of 

the most important comparable impacts for SCNN 

[11,48,49]. Prior to finalizing the model, a few trials 

and errors confirmed the 3×3 filter size with 16 filters, 

increasing order dropout regulation0.25, 0.25, 0.25, 

and 0.5 accurate and fitting features. To add to it, each 

conv layer stride value 1 following pooling layer two 

can curb the tallness and thickness of the output from 

the input images, and padding in conv layer value set 

'same' and pooling layer 'valid' adjust the 

dimensionality of the model data effectively. When 

inputting data into a trained model, the last stage 

entails utilizing another fitting technique, like the 

model.fit() method from the Keras library in Python. 

Before shuffling the data, this function takes in 

parameters such as data features and labels, both 

formatted as NumPy arrays via the NumPy library. A 

batch size of sixteen samples and a validation split 

float value of thirty percent is specified, denoting the 

portion of the training data designated for validation. 

For the validity check, we separated some images into 

the validation folder mentioned in section 3.1, which 

confirms the model's actual validation accuracy. 

Furthermore, the SCNN model is trained for forty 

epochs. Table 2 lists the precise settings for each CNN 

layer. 

 

 
Figure 7 Design of simplistic CNN (SCNN) 

 

Table 2 Parameters and layers that are used in simplistic CNN 
Layers Conv._1 Pool. _1 Conv._2 Pool. _2 Conv._3 Pool. _3 Dense. _1 

Filter sizes 3×3 2×2 3×3 2×2 3×3 2×2  

No of filters 16  16  32   

Dropout 0.25 0.25 0.25 0.5 

Stride 1 2 1 2 1 2  

Padding same valid same valid same valid  

 

These layers are designed to adaptively learn 

discriminative and optimal features. The 

convolutional layers utilize filters to process localized 

parts of the input, enabling them to generate strong 

responses to specific facial features while suppressing 

others, thereby extracting important local structures.  

 

After each convolutional layer, batch normalization 

and the ReLU activation function are implemented, 

which improves performance and speeds up the 

process. Following this filtering process, down-

sampling is performed in the pooling (Maxpooling) 

layer, enhancing the network's robustness against 

positional variations. Dropout is then applied after the 

pooling layers to curb the risk of overfitting the model. 

Collectively, these layers contribute to the network's 

efficiency in learning meaningful representations from 

the input data. In our proposed model, the required 

parameters amount to 107,601 (as indicated in Table 

3), whereas a standard CNN model, Too et al. [50], 

utilizes 1,086,273 parameters (as shown in Table 4), 

indicating a significantly higher parameter count. Our 

proposed model employs 9.9% fewer hyper-

parameters associated with the small CNN 

architecture. 

 

Table 3 Total parameter required in SCNN 
Layer names Output Map Params # 

Conv2d_1 (conv2d.) (None. 68, 68, 16.) 160 

Activation. 

(activation) 

(None. 68, 68, 16.) 0 

Dropout (dropout) (None. 68, 68, 16.) 0 

Max_pooling_2d_1 

(max pooling) 

(None. 34, 34, 16.) 0 

Conv2d_2 (Conv2D.) (None. 32, 32, 16.) 2320 

Activation_1 

(Activation) 

(None, 32, 32, 16.) 0 
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Layer names Output Map Params # 

Dropout_1 (dropout) (None, 32, 32, 16.) 0 

. Max_pooling_2d_2. 

(max pooling) 

(None, 16, 16, 16.) 0 

Conv2d_3 (Conv2D) (None, 14, 14, 32.) 4640 

. Activation_2. 

(Activation) 

(None, 14, 14, 32.) 0 

Dropout_2(Dropout) (None, 14, 14, 32.) 0 

Max_pooling_2d_3 

(max pooling) 

(None, 7, 7, 32) 0 

Flatten_1 (Flatten) (None, 12544.) 0 

Dense_2(Dense) (None, 64.) 100416 

Dropout_3 (Dropout.) (None, 64.) 0 

Dense_3(Dense.) (None, 1.) 65 

Activation_3 

(Activation) 

(None, 1.) 0 

Total params:  1,07,601 

 

Table 4 The parameter required in the original CNN 
Layer (Names) Output Map Param# 

Conv_2d 

(conv2d) 

(None,68,68,64.) 2560 

Activation 

(Activation) 

(None.68,68,64.) 0 

Max_pooling_2d. 

(Maxpooling_2d) 

(None.34,34,64.) 0 

Conv_2d 

(conv2d.) 

(None.32,32,64.) 590080 

Activation 

(Activation) 

(None.32,32,64.) 0 

Max_pooling_2d 

(Maxpooling_2d.) 

(None.16,16,64.) 0 

Flatten (Flatten.) (None, 65536.) 0 

Dense (Dense.) (None, 64.) 4194368 

Dense (Dense.) (None, 1.) 65 

Activation 

(Activation.) 

(None, 1.) 0 

Total params: 

 

 1,086,273 

 

3.6Performance metrics 

We estimated our outcomes using various measures, 

such as accuracy, confusion matrix, precision, recall, 

and F1-score matrices as shown in Equations 2 to 5. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝 + 𝑇𝑛

𝑇𝑝+𝐹𝑝+ 𝑇𝑛+ 𝐹𝑛
  (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
   (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝+𝐹𝑛
    (4) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (5) 

 

Where Tp, Tn, Fp, and Fn represent True’ positive, 

True’ negative, False’ positive, and False’ negative, 

respectively. 

 

4.Results 

In the paper, emphasize the calculation of SCNN 

model using different datasets of potato early and late 

blight [8], as well as other plant disease datasets. The 

Plant-Village Kaggle dataset [8], a publicly available 

dataset for crop diseases, is used explicitly in this 

study. select the potato and tomato blight disease 

classes from the Plant-Village Kaggle dataset, with 

1000 images used for training purposes in each class. 

It is noteworthy that the data in the Plant-Village 

dataset exhibit a consistent background and relatively 

unbroken intensity. 

 

Additionally, introduce our dataset, which includes 

images captured in multiple backgrounds with leaves 

present in a single image. Then convert them into 

grayscale, which results in a faster run. To ensure a fair 

evaluation, both datasets are arbitrarily Segregated 

into training and testing sets, adhering to a 70:30 

distribution with the help of the validation split 

method. For consistency, the image sizes are changed 

to 230×230 pixels. Figure 1 showcases sample photos 

from several datasets, while Table 5 gives 

comprehensive details on each dataset, including the 

disease's common and scientific names, its type, and 

total photographs in each class. 

 

4.1Experimental results 

The outcomes of the model are implemented on 

various datasets, as shown in Table 6. On the Kaggle 

Plant-Village image set (tomato), the model trained for 

40 epochs and recorded the training loss peaked at 

0.2616, and concurrently, the training accuracy 

reached 0.8971. The epoch accuracy and validation 

dataset loss were 0.2429 and 0.9233%, respectively. 

The highest training loss observed in the Kaggle 

dataset (potato) was 0.1064, with a trained image 

accuracy value of 0.9350. Accuracy values with 

validity loss were 0.1197 and 0.9450%, respectively. 

On our dataset, the model produced accuracy scores of 

95.17% for validation and 99.39% for training, with a 

validation value loss of 0.2039. These consequences 

demonstrate the robustness of our dataset, which 

contains images captured in real-time conditions with 

intricate backgrounds. 

 

Furthermore, after splitting the dataset into a 

70%(train) and 30%(test) ratio for training cost and 

validation value sets, the build model trained for 40 

epochs and evaluated its performance. The accuracy 

value and cost of loss trends for the SCNN's training 

and validation on the Plant Village, rice, and cassava 

datasets, respectively, are shown in Figure 8 to 10. 
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Table 5 Data descriptions for the own surveyed dataset (potato) and Plant-Village's potato crops blight, tomato blight 

images 
Dataset Plant name Disease name Disease Scientific name No of Images 

Plant-Village Potato Early Blight Alternaria solani 1000 

Plant-Village Potato Late Blight Phytophthora infestans 1000 

Plant-Village Tomato Early Blight Alternaria solan. 1000 

Plant-Village Tomato Late Blight Phytophthora infestans 1909 

Own  Potato Early Blight Alternaria solani 2000 

Plant-Village Potato Late Blight Phytophthora infestans 2000 

 

 
 (a)Metrics for trained and validated accuracy        (b)Metrics for trained and validated loss 

Figure 8 Kaggle Plant-Village (Images of Tomato early and late blight leaves) dataset, (a) Metrics for trained and 

validated accuracy, (b) Metrics for trained and validated loss 

 

 
(a)                                                                                          (b) 

Figure 9 Kaggle Plant-Village (Images of Potato leaves early and late blight) dataset, (a) Metrics for trained and 

validated accuracy, (b) Metrics for trained and validated loss 
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(a)                                                                                    (b) 

Figure 10 Own surveyed (Potato leaves early and late blight) dataset, (a) Metrics for trained and validated accuracy, 

(b) Metrics for trained and validated loss 

 

SCNN build-model indicates its effectiveness despite 

having fewer parameters, unlike VGG16, ResNet18, 

and InceptionV1. Additionally, the model contains 

fewer hidden layers and overfitting issues when 

considering promising results. Various pre-trained 

models, including these three, are available for many 

datasets, but for small datasets like two types of 

classes, the SCNN model is preparable. The notable 

work contained in the model is hidden in layer three, 

with legalization corresponding to .25-.25.5. So, the 

input image features are not lost, the dimensions of the 

images are accurate, and fewer argument passes 

ensure better quality images with better accuracy in a 

short time comparable to another CNN model 

underlying pre-trained. The model's generalizability 

across dissimilar plant diseases beyond potato blight 

disease included in the work is satisfactory as the early 

blight that is regularly spotted on the leaves can easily 

be detected in this model, so the late blight large-size 

legion can also be detected. The Kaggle dataset 

confirms this successful detection of the model. 

Finally, a significant reduction in calculation charge 

by curbing the sum of parameters by approximately 

9.9% [41] compared to standard CNN architectures. 

The performance of the model is depicted in Figures 8 

to 10. 

 

Table 6 Summary of the DL methods implementation used 
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The work evaluated the build model's presentation 

with the confusion matrix's table attribute. Table 7 

offers standards of test value, accuracy, precision, 

recall, and F1 score metrics measured from three plant 

datasets. Table 7 shows that our own dataset achieved 

the highest testing accuracy compared to the Plant-

Village image set. 

 

Additionally, we separated the dataset into two 

classes, namely training, and testing, with the test class 

representing the remaining portion of images. On the 

basis of this data division, we evaluated how well the 

model performed using several leave images of the 

train and test classes. Table 8 displays how SCNN is 

presented on each fold. It can be observed from Table 

8 that there is minimal deviation in performance across 

each dataset. The accuracy in the Plant-Village tomato 

and potato datasets ranged from 91.83% to 92.01% 

and 94.17% to 94.33%, respectively. For our dataset, 

the accuracy ranged from 94.89% to 95.12%. These 

findings show that the suggested CNN technique 

performs well over a range of data splits and 

demonstrates remarkable stability in disease detection. 

 

Table 7 Performance indicator for the proposed model when applied to test pictures 
Datasets Accuracy Recall Precision F1-score P
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t -V
illa

g
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to
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lig
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94.50% 94.09 93.27 94.18 
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95.69 95.63 95.03 94.91 

 

Using k-fold (4-fold) cross-validation, we 

incorporated it into our approach to assessing the 

stability of the SCNN model by analyzing how well it 

performed on the illness datasets. The datasets were 

split into five equal portions, five utilized as test sets 

and the remaining as training sets. This gave us the 

opportunity to evaluate the model's effectiveness using 

various combinations of training and testing photos. 

The performance outcomes for individual folds of the 

SCNN are outlined in Table 8. 

 

In Table 8, it is evident that the performance of each 

pair of datasets exhibits only minor variations.032 The 

accuracy ranged from 91.79% to 92.27% for the Plant-

Village tomato blight dataset, from 94.02% to 94.42% 

for the Plant-Village potato blight dataset, and from 

94.83% to 95.09% for our own dataset. These findings 

show that our suggested CNN technique demonstrates 

strong illness identification stability, as the model 

consistently outperforms other training and testing 

data combinations. 

Table 8 The proposed SCNN's k-fold cross-validation-based output 
Number of Fold Plant-Village dataset Own dataset 

Tomato blight Potato blight Potato blight 

 Accuracy 

1 0.9183 0.9417 0.9489 

2 0.9189 0.9429 0.9495 

3 0.9190 0.9437 0.9509 



International Journal of Advanced Technology and Engineering Exploration, Vol 11(115)                                                                                                             

833          

 

Number of Fold Plant-Village dataset Own dataset 

Tomato blight Potato blight Potato blight 

4 0.9201 0.9433 0.9512 

    

Average 0.9193 0.9429 0.9501 

 

4.2Evaluation of performance against a trained 

network 

On the survey datasets, evaluated a number of largest 

neural networks trained models namely VGG16, 

InceptionV1, and ResNet18. Then, contrasted their 

performance with that of SCNN model in relations of 

data training duration with accuracy. Table 9 displays 

the findings of this performance comparison. 

The percentage of correctly identified classes in the 

test image set is what accuracy means. It is indistinct 

from the routine results that our suggested SCNN, 

which only uses 1,07,601 parameters, performs 

admirably on our prepared datasets. 

Table 9 Performance evaluation using a trained network 
Models 

V
g

g
1
6
 

R
esN

et1
8

 

In
cep

tio
n

v
1
 

P
ro

p
o

sed
 

S
C

N
N

 

D
a

ta
set 

E
p

o
ch

 

Parameter 

1
3

8
,4

2
3

,2
0

8
 

1
1

,5
1
1

,7
8

4
 

6
,6

0
0

,0
0
0
 

1
,9

8
5

,6
6
5
 

 O
w

n
 

  4
0
 

Accuracy 

9
4

.6
5

%
 

9
4

.9
8

%
 

9
3

.2
7

%
 

9
5

.1
7

%
 

Training time 

(epoch/second) 1
0

4
 

1
6

2
 

2
6

8
 

5
9

.5
6
 

 

Table 9 also provides the training time required per 

epoch for each model on surveyed datasets. It is 

evident that SCNN model requires significantly less 

training time compared to the various pre-existing 

networks. This is applied to the lower number of layers 

utilized in our SCNN model. The existing trained dl 

models have lower performance accuracies because 

they rely on earlier trained weights obtained from the 

ImageNet data. As a result, these models did not 

achieve optimal results when applied to our specific 

datasets. In divergence, our proposed model leverages 

various convolutional layers with different filter sizes 

(16, 16, 32) to extract better features, reducing 

computational complexity and improving model 

speed. Additionally, dropout is used to mitigate 

overfitting, while batch normalization enhances the 

SCNN performance. Thus, compared to pre-trained 

models, the training time needed for our suggested 

model is much less. Table 10 presents a comparison of 

the precision of the fed dataset in the model with 

earlier methodologies. 

 

Table 10 Comparison of accuracy with relevant background studies 
List of authors Approaches Used imagesets Best accuracy 

Chambon et al. (2021) [22] train a DNN with a mini-batch stochastic 

gradient descent (SGD) 

Self-data 88.56% 

Picon et al. in (2019) [36] deep residual network (DRN) Imagenet-ILSVRC15. 84% 
Hu et al. (2020). [38]  modified Cifar10 fast CNN Self-data 92.5% 

Chen et al. (2020) [39] Inception-Visual Geometry Group 

Network (INC-VGGN) 

Fujian Institute of 

Subtropical Botany, 

Xiamen, China. 

92% 

Hassan et al. (2021) [41]  Shallow CNN. Corn and Plant-Village 94% 

Ma et al. in (2018) [51] Deep Convolutional neural networks  Self-data 93.4% 

Li et al. (2020) [52]  Shallow CNN Plant-Village 94% 

Barbedo in (2018) [53] GoogLeNet model Digipathos. 80.75% 

Gandhi et al. in [54] CNN Plant-Village  92% 

Our work SCNN Own 95.17% 
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5.Discussion 
This study proposes a novel SCNN model consisting 

of three hidden layers, demonstrating effective disease 

classification in plants. The Plant-Village Kaggle 

dataset and own dataset were used to construct a CNN 

model to perceive plant illnesses, including early and 

late blight on potatoes. The model's performance has 

also been evaluated through a number of test cases, 

and the findings for the detection of blight infections 

have been satisfactory. The model's efficacy across 

various datasets and training epochs is shown via 

evaluation measures, which include accuracy, training 

data loss, and validation data loss. Significant results 

highlight the model's reliable performance and 

excellent accuracy in identifying potato blight 

pathogens. The implications point to practical uses for 

early illness identification and control in agriculture. 

Recognizing one's limitations entails recognizing 

issues with generalizability and other plant diseases or 

variations in environmental conditions not captured in 

the datasets used. The reliance on image-based data 

may raise trials in scenarios where full ground truth 

labelling is unavailable or where disease symptoms 

manifest differently. Additional validation and 

optimization are advised, and comparative analysis 

demonstrates the model's advantages over current 

techniques. The study offers insightful information 

about enhancing crop management techniques and 

reducing agricultural losses via CNN-based disease 

detection. Above all, an Android application based on 

this research is currently being developed, which 

enables several agricultural specialties like weed and 

pest identification. There is also an interest in 

investigating how well the suggested model performs 

when applied to multiple datasets of plant diseases that 

contain a variety of photos from various geographical 

locations. 

 

A complete list of abbreviations is listed in Appendix 

I. 

 

6.Conclusion  
DL, combined with the internet, encompasses methods 

within a prevailing domain for accurate disease 

identification among real-time android or other 

platforms. In this study, we put forward a unique 

SCNN model consisting of three hidden layers, 

demonstrating effective disease classification in 

plants. According to experimental results, our 

proposed approach achieves improved accuracy in 

disease identification. Using two separate plant 

datasets from Plant-Village, we assess how robust the 

model is. For the pathogens that cause potato and 

tomato blight, the suggested model achieves testing 

accuracies of 94.50% and 92.33%, respectively. 

Furthermore, we have created a dataset exclusively for 

developing the suggested model and achieved a 

95.17% accuracy rate using this dataset. 
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 Appendix I 
S.No. Abbreviation Description 

1 3D Three-Dimensional 

2 CNN Convolutional Neural Network 

3 DL Deep Learning 

4 DRN Deep Residual Network  

5 ICE Information and Communication 
Engineering 

6 INC-VGGN Inception-Visual Geometry Group 

Network 

7 JPG Joint Photographic Group 

8 MFRCNN Multi-scale Local and Global 
Feature Representation with 

Convolutional Neural Network  

9 ReLU Rectified Linear Unit 

10 RGB Red Green Blue 

11 SCNN Simplified Convolutional Neural 

Network 

12 SVM Support Vector Machine 

13 VGG Net Visual Geometry Group Networks 

14 YOLO v4 You Only Look Once Version 4 

 

 

 


