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1.Introduction 
The facility layout problem (FLP) revolves around the 

optimization of the arrangement of various elements 

within a manufacturing or distribution system. These 

elements can include machinery, production 

departments, and storage areas like warehouses. The 

primary objective in solving the FLP is to minimize 

the total material handling cost (MHC) involved in the 

system operation. MHCs encompasses various 

expenses related to moving materials or products 

within the facility, such as labour, equipment 

maintenance, and transportation [1].  

 

 
*Author for correspondence 

 

MHCs is a significant concern for businesses, as they 

represent non-value-added expenses, which means 

they do not directly contribute to the product's value. 

These costs can account for a substantial portion of a 

manufacturing system's overall operating expenses, 

ranging from 20% to 50% [2]. Moreover, in the 

context of product cost, they can make up a significant 

share, varying from 15% to 70% [2]. 

 

Therefore, optimizing facility layouts to reduce MHCs 

is critical for enhancing operational efficiency, cost-

effectiveness, and overall competitiveness in 

manufacturing and distribution industries. By 

implementing an effective layout, 10-30% of this cost 

can be decreased, while also contributing to the 
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Abstract  
The dynamic facility layout problem (DFLP) is one of the most complex combinatorial optimization challenges. Given that 

obtaining optimal solutions using exact methods requires substantial time and computational power, researchers often turn 

to nonconventional optimization techniques to achieve near-optimal solutions. This paper presents a genetic algorithm 

(GA) enhanced with a local search (LS) procedure for solving DFLPs. The algorithm employs roulette wheel selection 

(RWS), single-point crossover (SPC), and swap mutation (SM) as its genetic operators, with the 2opt neighborhood search 

serving as the LS operator. The termination criterion (TC) used in the proposed algorithm is the maximum number of 

generations. An extensive evaluation of the algorithm's performance was conducted in this research. It was tested on a 

diverse set of 48 problem instances, representing various problem sizes. To assess the effectiveness of the algorithm, the 

results produced were compared with those documented in existing literature and benchmarked against the best-known 

solutions previously reported. This rigorous comparison allows for an evaluation of the algorithm's performance relative 

to other established methods and state-of-the-art solutions available in the field. Through extensive experimentation on 48 

test instances, the algorithm consistently delivers competitive results, achieving solutions within a margin of less than four 

percent deviation from the best-known solutions across all instances, with an average deviation ranging from 0% to 3.71%. 

Although the average runtime of the algorithm is provided, its comparison with existing literature is deemed irrelevant due 

to significant variations in machine configurations. This work introduces a hybrid genetic algorithm (hGA) specifically 

designed for solving DFLPs. By integrating fundamental genetic operations with a localized search approach, the proposed 

hGA demonstrates promising capabilities in tackling this complex optimization problem. The outcomes affirm the efficacy 

of the hGA in swiftly converging to near-optimal solutions for DFLPs, underscoring its potential for practical applications.  
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system's overall efficiency [2]. In the manufacturing 

industry, the layout of a plant is a decision to be made 

over time, since changing the layout involves a 

substantial investment that is not easily recouped [3]. 

 

1.1Challenges in dynamic facility layout problem 

(DFLP) 

FLPs encompass a range of challenges related to 

optimizing the arrangement of elements within a 

facility. There are two primary categories of these 

problems based on the nature of the data used to devise 

the layout. Static facility layout problems (SFLP) are 

the first category, characterized by fixed schedules and 

based on flow data that do not change over time [4]. 

The second category is DFLP, which, for each 

planning period, has different flow patterns and as a 

result, may require changes in facility layout [5]. The 

objective of SFLP is to minimize the total material cost 

by positioning N different facilities in N possible 

locations. 

 

SFLP belongs to the realm of combinatorial 

optimization problems, a field that has received 

extensive attention for many years. It is frequently 

represented as a quadratic assignment problem (QAP), 

initially formulated by Koopmans and Beckmann in 

1957 [6]. Sahni and Gonzalez [7] established the NP-

hardness of the QAP, demonstrating that obtaining an 

approximation close to the optimal solution is not 

achievable in polynomial time. Despite extensive 

research on the QAP, there is currently no exact 

algorithm capable of efficiently solving problems with 

sizes beyond N > 30, as observed by Loiola et al. [8]. 

QAP is still widely regarded as one of the most 

difficult combinatorial optimization problems. The 

DFLP was first defined and addressed by Rosenblatt 

[9]. The DFLP is an extension of the SFLP in which 

the layout of the facility under consideration remains 

the same throughout all the planning periods under 

consideration. The objective of SFLP is to minimize 

the total MHC by positioning N different facilities in 

N possible locations. The SFLP is commonly 

formulated as QAPs introduced by Koopmans and 

Beckmann [6]. The QAP is considered one of the most 

difficult to solve combinatorial optimization 

problems. 

 

In the case of DFLP, the layout of the facility changes 

from period to period. Thus, the total cost involved in 

a DFLP has two components namely, MHC – to 

transport items between the departments and re-

arrangement cost – to rearrange the facilities as the 

planning periods change [10]. The mathematical 

representation of the DFLP, initially proposed by 

Balakrishnan [11] is presented in Equation 1. It’s 

worth mentioning that this particular formulation 

signifies an extension of the quadratic integer 

programming (QIP) framework employed in solving 

the QAP. 

 

Minimize 

𝑍 =  ∑ ∑ ∑ ∑ 𝐴𝑡𝑖𝑗𝑙𝑌𝑡𝑖𝑗𝑙
𝑁
𝑙=1

𝑁
𝑗=1

𝑁
𝑖=1

𝑇
𝑡=2 +

∑ ∑ ∑ ∑ ∑ 𝐶𝑡𝑖𝑗𝑘𝑙
𝑁
𝑙=1 𝑋𝑡𝑖𝑗𝑋𝑡𝑘𝑙

𝑁
𝑘=1

𝑁
𝑗=1

𝑁
𝑖=1

𝑇
𝑡=1  (1) 

subject to 

∑ 𝑋𝑡𝑖𝑗 = 1, 𝑖 = 1, 2, . . . , 𝑁 𝑎𝑛𝑑 𝑡 =  1, 2, . . . , 𝑇

𝑁

𝑗=1

 

     (2) 

∑ 𝑋𝑡𝑖𝑗 = 1, 𝑗 = 1, 2, . . . , 𝑁 𝑎𝑛𝑑 𝑡 =  1, 2, . . . , 𝑇𝑁
𝑖=1   

     (3) 

𝑌𝑡𝑖𝑗𝑙 = 𝑋(𝑡−1)𝑖𝑗𝑋𝑡𝑖𝑙 , 𝑖, 𝑗, 𝑙 =  1, 2, . . . , 𝑁, 𝑡 =

 1, 2, . . . , 𝑇    (4) 

 

𝑋𝑡𝑖𝑗 = {0, 1} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗, 𝑡   (5) 

 

𝑌𝑡𝑖𝑗𝑙 =  {0, 1} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗, 𝑙, 𝑡  (6) 

 

where 

m = Number of departments and locations. 

T = Number of periods. 

Atijl = Cost of shifting department i from location 

j to l in period t (where Atijj= 0). 

Ctijkl = Cost of material flow between department 

i located at location j and k located at l in period 

t. 

𝑋𝑡𝑖𝑗

=  {
1 if department 𝑖 is assigned to location 𝑗 at period 𝑡

0 otherwise
 

𝑌𝑡𝑖𝑗𝑙 =

{
1 if department 𝑖 is shifted from location 𝑗

 to 𝑙 at the beginning of period 𝑡
0 otherwise

 

 

The goal of Equation 1 is to reduce the total costs 

associated with both rearranging departments and the 

flow of materials between them. Constraint set 

Equation 2 assures that each location is exclusively 

assigned to one department during each period, while 

constraint set Equation 3 guarantees that each location 

is allocated to precisely one department for each 

period. Constraint set Equation 4 allows for the 

inclusion of rearrangement costs when a department is 

relocated between locations in consecutive periods, 

merging them with material flow costs. Constraints 

Equation 5 and Equation 6 enforce the required 

restrictions on the decision variables. 
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In this study, a hGA combining GA with local search 

(LS) is introduced to solve the DFLP. To evaluate the 

effectiveness of the proposed method, the hGA is 

applied to a set of 48 benchmark test instances for 

DFLPs provided by Balakrishnan and Cheng [12].  

 

This application demonstrates the effectiveness of the 

hGA in optimizing complex layout configurations 

over time. 

 

The remaining sections of the paper are structured as 

follows: Section 2 offers an overview of prior research 

on DFLP. Section 3 explains the fundamental 

principles of the proposed hGA and the diverse 

parameters and operators employed in the hGA, 

section 4 outlines the experimental methodology and 

in section 5, the results and associated discussions are 

presented. Finally, section 6 provides the paper’s 

conclusion.    

 

2.Literature review 
In the context of DFLP, two primary categories of 

solutions have emerged: agile (or adaptive) and robust 

strategies. These approaches differ in their handling of 

layout changes and are selected based on specific 

considerations and constraints [13, 14]. The agile 

approach involves frequently adjusting the facility 

layout after each period within the planning horizon to 

accommodate changing flow patterns or operational 

requirements. This method, while effective in 

optimizing layouts to suit evolving conditions, 

typically incurs higher relocation costs. It is preferred 

when relocation costs are low and the facility can 

easily adapt to changes [15]. In contrast, the robust 

approach maintains a static layout throughout the 

planning horizon, designed to minimize total MHCs 

across all periods despite changing conditions. This 

strategy avoids the disruptions of frequent layout 

changes and is chosen when stability and consistency 

are crucial, and relocation costs are high. The decision 

between agile and robust strategies depends on factors 

such as facility nature, relocation costs, required 

flexibility, and tolerance for disruptions. Agile 

strategies are advantageous when relocation costs are 

low and adaptation needs are high, as they allow for 

cost-efficient, quick adjustments, and long-term 

savings. Thus, agile strategies are ideal for scenarios 

with low relocation costs, short adjustment times, and 

uncertain future planning periods, enabling facilities to 

stay flexible and efficient [16]. 

 

Ballou [17] provides a dynamic programming (DP) 

approach for determining the best site for a dynamic 

warehouse. This study can be seen as a catalyst for 

further research into dynamic layout issues. Exact 

algorithms, heuristic/metaheuristic algorithms and 

hybrid algorithms are three types of DFLP solution 

techniques. Table 1 provides an overview of the 

methods and algorithms used, along with the authors 

of the respective papers. 

 

Table 1 Consolidation of literature review of DFLP 

Algorithm Paper Method 

Exact 

Algorithms 

(Ballou, 1968) [17] DP 

(Rosenblatt, 1986) [9] DP 

(Kim and Kim, 1999) [18] Branch and Bound Algorithm 

(Pérez-gosende et al. 2024) [19] Mixed integer non-linear programming 

Heuristic/ 

Metaheuristic 

Algorithms 

(Rosenblatt, 1986) [9] Generating random layouts using computerized relative 

allocation of facilities technique (CRAFT) or 

computerized facilities design (COFAD) in each period 

(Urban, 1993) [20] Steepest descent pairwise interchange 

(Conway and Venkataramanan, 1994) [21] GA 

(Kaku and Mazzola, 1997) [22] Tabu Search 

(Balakrishnan and Cheng, 2000) [12] GA 

(Baykasoğlu and Gindy, 2001) [23] Simulated annealing 

(McKendall et al. 2006) [24] Simulated annealing 

(Rezazadeh et al., 2009) [25] Discrete particle swarm 

(Nahas et al. 2010) [26] Iterated great deluge 

(Yang et al. 2011) [27] GA 

(Pillai et al. 2011) [15] Simulated annealing 

(Molla et al. 2020) [28] Chemical reaction optimization 
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Algorithm Paper Method 

(Zouein and Kattan, 2021) [29] Improved construction approach using ant colony 

optimization 

(Palubeckis et al. 2022) [30] Variable neighbourhood search (VNS) and fast LS 

(McKendall and Hakobyan 2021) [31] GA 

Hybrid 

Algorithms 

(Balakrishnan et al. 2003) [32] GA 

(McKendall and Shang, 2006) [33] Ant Systems 

(Azimi and Saberi 2013) [34] Discrete Particle Swarm and Simulation 

(Moslemipour 2018) [35] Multi-Population GA 

(Hosseini et al.2014) [36] Imperialist Competitive Algorithms, VNS, and 

Simulated Annealing 

(Chen, 2013) [37] Ant Colony Algorithm 

(Pradeepmon et al. 2018) [10] Estimation of distribution algorithm (EDA) 

(Khajemahalle et al.  2020) [38] Hybrid nested partitions and simulated annealing 

algorithm 

(Hosseini et al. 2021) [39] Modified GA and Cloud-based simulated annealing 

algorithm  

(Guan et al, 2022) [40] Dynamic extended row facility layout problem 

(DERFLP) 

(Matai 2023) [41] Simulated annealing algorithm 

(Sotamba et al. 2024) [42] Mixed solution methodologies 

 

The exact solution procedures guarantee the optimal 

solutions of the problem, but it may require a long time 

to provide the optimal solution.  

 

Using a long time may not be practical in many 

situations, and thus researchers of the DFLP are 

normally satisfied with a near-optimal solution in a 

short span of time.  

 

From the above discussion and Table 1, it is evident 

that non-conventional optimization methods are 

widely employed for solving DFLPs. Among the 

popular metaheuristic algorithms used for solving 

DFLPs, the GA has extensively studied over the years. 

The GA was in the limelight when researches tried to 

hybridise the metaheuristic algorithms for solving 

DFLPs. But none of the studies reported has not used 

the GA combined pair-wise exchange (PWX) LS or 

any other similar methods for solving DFLPs. Thus, in 

this work an hGA is proposed which hybridises GA 

with LS for solving the DFLPs. 

 

3.Methodology 

In the GA, a population of potential solutions is 

processed, with each member of the population 

represented as a valid solution in the form of a 

chromosome. The GA undergoes iterative processes 

aimed at steering the population toward enhanced 

solutions in terms of solution quality. These iterations 

of the GA involve several key steps, namely selection, 

reproduction, evaluation, and replacement, which are 

elaborated upon in the subsequent section. The 

algorithm concludes when it converges toward the 

optimal solution. 

 

Figure 1 represents the flow chart for the proposed 

hGA and Figure 2 represents the corresponding 

pseudo-code. In the proposed algorithm after the 

normal genetic operators present in GA (namely, 

selection, crossover and mutation) are over all the 

individuals in the population undergoes the LS 

procedure. After this LS is over the GA tests for the 

TC and if it satisfies, the algorithm is terminated 

reporting the obtained result. 

 

Else, the genetic operators and LS are repeated. As a 

LS is incorporated into the GA, the neighborhood of 

the solutions is intensively searched for better 

solutions. Thus, the proposed hGA provides better 

quality solutions for the problems considered. 

 

GA is a powerful tool for tackling complex 

optimization problems like DFLPs. However, they can 

sometimes get stuck in local optima, meaning they 

find a good solution but not necessarily the best one. 

Here's where hybridizing GA with a LS procedure can 

offer advantages. LS procedures excel at refining 

solutions within a specific area of the search space. By 

incorporating a LS after the GA's selection and 
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crossover stages, the hGA can take promising 

solutions generated by the GA and further optimize 

them, potentially leading to better overall solutions for 

the DFLP. 

 

 
Figure 1 Flow diagram of hGA 

 

 
Figure 2 Pseudo code of GA 

 

The GA's exploration capabilities help the hGA to 

search a broader range of solutions. This exploration 

can nudge the search out of areas with suboptimal 

solutions (local optima) that the GA might get trapped 

in on its own. The LS then takes over and refines these 

explored solutions, potentially leading to better overall 

optima. GA is good at exploring the entire solution 

space, but they might not always find the best 

solutions within a specific region. LS excels at 

exploiting promising areas but lacks the ability to 

explore widely. Hybridizing them combines these 

strengths, allowing the GA to explore broadly while 

the LS efficiently refines promising solutions 

identified during exploration. By focusing on refining 

promising solutions, the LS can potentially help the 

hGA converge to a good solution faster compared to a 

pure GA that might take longer to escape local optima. 

Overall, hybridizing GA with the LS for DFLPs has 

the potential to deliver better quality solutions, escape 

local optima, and converge faster compared to using a 

pure GA approach. In the proposed hGA, three critical 

parameters must be carefully determined: population 

size, crossover probability, and mutation probability. 

 

Population size: Population size denotes the number of 

individuals or chromosomes present within the 

population at each generation. Typically, in hGAs, the 

population size remains constant throughout the 

evolutionary process. Keeping it fixed ensures that the 

algorithm explores the search space consistently. The 

choice of population size can vary depending on the 

specific problem, but it should be large enough to 

provide diversity and avoid premature convergence 

while being manageable in terms of computational 

resources. 

 

Crossover probability determines the likelihood that 

selected parents undergo crossover to produce 

offspring. In hGAs, it is common to set the crossover 

probability relatively high, often around 0.9. A high 

crossover probability encourages the recombination of 

genetic material from parents, facilitating the 

exploration of potential solutions. This high value 

promotes genetic diversity within the population and 

helps in escaping local optima. 

 

Mutation probability: Mutation probability signifies 

the likelihood of a mutation happening in a gene 

within a chromosome. Unlike crossover, mutation 

introduces small, random changes to individual 

chromosomes. The value of the mutation probability 

is typically kept low because biological mutations are 

relatively rare events. A low mutation probability 

ensures that the algorithm primarily relies on 

crossover for genetic diversity, using mutation as a 

mechanism to introduce occasional, small-scale 

changes that might lead to novel solutions. 

 

When configuring an hGA, it's crucial to strike a 

balance between population size, crossover 

probability, and mutation probability. These 

parameters impact the exploration and exploitation of 

Initialize 

Parameters

Generate Initial 

Random Population

Evaluate 

Fitness

Termination 

Criteria

Selection

Crossover 

and Mutation

Local Search
Return Best 

Individual

YES

NO

hGA_pseudo_code 

{ 

1. Initialise generation number t = 0 and choose a 

Termination Criteria (TC) 
2. Generate an initial random population, P(0) of 

individuals 

3. Evaluate the fitness of individuals in P(0) 
4. While TC not satisfied do 

{ 

t  t +1; 

Select parents for offspring production; 
Apply crossover and mutation operations; 

Do the LS on all individuals in the population; 

Select a new population, P(t), of survivors; 
Evaluate P(t); 

} 

5. Return the best individual of P(t); 
} 
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the search space. Population size influences the 

diversity of the population, while crossover and 

mutation probabilities determine the degree of genetic 

recombination and mutation, respectively. Finding the 

right combination of these parameters depends on the 

specific problem at hand and often involves 

experimentation and fine-tuning to achieve optimal 

performance. The hGA encompasses key operations, 

including selection, crossover, mutation, offspring 

insertion strategy and LS. These operations are 

explained below. 

 

3.1Selection 

The selection operator, inspired by Darwinian natural 

selection, is the core driving mechanism in GAs. It 

mimics nature's "survival of the fittest," influencing 

which individuals become parents in each generation. 

Striking the right balance is crucial: too much 

selection force can prematurely converge to 

suboptimal solutions, while too little can hinder 

progress. This operator steers the GA toward 

promising areas within the search space, ultimately 

shaping the evolution. Various selection schemes, like 

binary tournaments, RWS, Stochastic universal 

sampling, and rank selection, offer diverse strategies 

to achieve this, making it adaptable to different 

optimization tasks and preserving genetic diversity in 

the population. The selection procedure employed in 

the proposed hGA is RWS. 
3.1.1Roulette wheel selection (RWS) 

RWS, a widely used GA operator, mimics a roulette 

wheel by assigning probabilities based on an 

individual’s fitness level denoted as f(i), making it a 

key component in the selection process for GAs. This 

fitness value is computed as the reciprocal of the 

solution's associated cost. Within the current 

population, represented as P(t), each individual (i) is 

assigned a selection probability, p(i), which is in direct 

proportion to their fitness f(i). To streamline the 

selection process, every individual in the population is 

then provided with a cumulative probability range 

denoted as P(i) determined by their p(i) values. The 

selection process involves generating a uniform 

random number, denoted as r. Subsequently, the 

individual whose Ṗ(i) aligns with the generated 

random value, r, is replicated into the next population, 

P(t+1). The pseudocode of the implementation of 

RWS can be found in Figure 3. However, it's 

important to note that this method carries a potential 

drawback. It is susceptible to premature convergence 

toward local minima, especially when a dominant 

individual with high fitness dominates the population, 

potentially hindering the exploration of the entire 

solution space. Careful consideration and potential 

modifications are necessary to mitigate this risk and 

ensure the efficacy of the GA. 

 

 
Figure 3 Pseudo code of RWS 

 

3.2Crossover 

The crossover operator mimics natural reproduction, 

enabling solutions to share information and create 

offspring solutions. It involves taking two or more 

parent solutions and using them to generate new 

solutions. While the selection process duplicates good 

solutions within the population, it doesn't introduce 

entirely novel ones. In contrast, the crossover operator 

is applied to produce improved offspring solutions. 

Numerous crossover operators are available, some 

tailored to specific problems, while others are more 

general in their applicability. Commonly used ones 

include single point crossover (SPC), order 1 

crossover, cyclic crossover, position-based crossover, 

and partially mapped crossover. This research 

employs the SPC within the hGA. The SPC involves 

selecting a random crossover point in the parent 

solutions and exchanging the genetic material before 

and after that point to create offspring. This process 

allows for the combination of characteristics from both 

parents, potentially yielding solutions that inherit 

beneficial traits while promoting genetic diversity 

within the population. By implementing the SPC in the 

hGA, this work aims to harness its recombination 

power to discover improved solutions and enhance the 

algorithm's overall effectiveness.   
3.2.1SPC 

The SPC operator starts by selecting a single crossover 

point in the parent chromosomes. This operator splits 

the two parents at the selected position and the first 

part of the first parent is merged with the second part 

of the second parent and vice versa to obtain two new 

offspring. For example, consider the parent 

chromosomes P1: (1 2 3 4 5 6) and P2: (3 5 1 6 2 4), 

and suppose that the third position is selected as the 

crossover point. This leads to the following offsprings: 

RWS_pseudo_code 
{ 

1. Calculate the sum 𝑆 = ∑ 𝑓(𝑖)𝑛
𝑖=1  

2. For each individual 1 ≤ i ≤ n do 

{  

Generate a random number α  [0,S]; 

iSum = 0 ; j = 0  

Do {  
iSum  iSum + f(j)  

j  j + 1 

} while (iSum < α and j < n)  
Select the individual j 

} 

} 
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O1: (1 2 3 6 2 4) and O2: (3 5 1 4 5 6). Now, in O1 and 

O2 one element is repeating (2 in O1 and 5 in O2) and 

one element is missing (5 in O1 and 2 in O2). To make 

O1 and O2 feasible solutions, insert the missing 

element randomly in one of the positions of the 

repeating element. This gives the offsprings O1: (1 5 

3 6 2 4) and O2: (3 5 1 4 2 6). 

 

3.3Mutation 

The mutation operator introduces random alterations 

to selected values within certain individuals 

(chromosomes) in the population. This mutation 

occurs with a low probability, mirroring its biological 

counterpart. By doing so, the mutation operator 

preserves genetic diversity in the population, 

strengthening the GAs capability to discover nearly 

optimal solutions. Common mutation techniques 

include displacement mutation, swap mutation (SM), 

insertion mutation, and inversion mutation. For this 

study, the SM method is applied, aiming to provide the 

GA with the means to explore new genetic variations 

and potentially uncover improved solutions in the 

optimization process. 
3.3.1SM 

The SM operator functions by randomly selecting two 

elements from the parent string and interchanging their 

positions. For instance, take the parent solution string 

(1 2 3 4 5 6). If the second and fifth elements are 

randomly selected, the result is the solution string (1 5 

3 4 2 6). This process introduces variability in the 

genetic makeup of solutions, potentially leading to the 

discovery of better alternatives for optimization 

problems. 

 

3.4Offspring insertion strategy 

Options encompass the substitution of parents either 

with or without a specified probability, the 

replacement of parents when offspring exhibit higher 

fitness, enlarging the population size by merging 

offspring, and additional strategies. In this study, the 

strategy employed involves replacing parents in cases 

where the offspring demonstrate improved fitness. 

This approach ensures that the population 

continuously evolves towards better solutions by 

favouring the introduction of offspring that 

outperform their parent solutions. 
3.4.1Parent replacement strategy 

Once new solutions (offspring) are generated, there 

are several methods to incorporate them into the 

existing population. The offspring insertion method 

operates by comparing the fitness of offspring with 

that of their parents. When offspring exhibit superior 

fitness, they replace their parent solutions, while 

inferior offspring retain their parent’s place in the 

population. This approach embodies a greedy 

selection strategy, retaining only the best solutions 

generated through crossover and mutation. 

Consequently, the population remains constant in size, 

always containing the most promising solutions in 

pursuit of optimization. 

 

3.5LS 

In this study, each individual within the population 

undergoes a LS process known as the PWX, LS 

method. PWX entails systematically exchanging two 

distinct elements within the current solution to seek 

improved solutions.  If a better solution is identified 

through this exchange, it replaces the original, 

initiating a recursive PWX LS with the improved 

solution as the new focus. This process iterates until a 

solution is reached for which no superior solution 

exists within its PWX neighbourhood. Consequently, 

this study employs the recursive version of the PWX 

LS, ensuring that each individual is subjected to an 

iterative exploration of potential improvements, which 

can lead to the discovery of highly optimized solutions 

within the population. 

 

3.6Dataset used 

The test instances for DFLPs used in this research are 

those provided by Balakrishnan and Cheng [12]. The 

test data are grouped into six categories based on the 

number of departments and the number of periods as 

follows: 

· 6 departments, 5 periods (6d × 5p) 

· 6 departments, 10 periods (6d × 10p) 

· 15 departments, 5 periods (15d × 5p) 

· 15 departments, 10 periods (15d × 10p) 

· 30 departments, 5 periods (30d × 5p) 

· 30 departments, 10 periods (30d × 10p) 

 

Each category consists of eight different instances and 

thus there are a total of 48 test instances. 

 

3.7Illustration 

To offer a comprehensive explanation of the proposed 

algorithm, the initial DFLP benchmark instance was 

employed, as introduced by Balakrishnan and Cheng 

[12], features a 6-department problem spanning 5 

periods. Table 2 provides crucial details such as the 

department distance matrix, matrix, MHCs between 

departments for all five periods, and the corresponding 

rearrangement costs.  

 

Table 2 shows the Data for the 6-department × 5-

period problem from Balakrishnan and Cheng [12]. 

Different period has been shown from a to g. 
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Table 2(a) Distance matrix 
To 

From 
1 2 3 4 5 6 

1 0 1 2 1 2 3 

2 1 0 1 2 1 2 

3 2 1 0 3 2 1 

4 1 2 3 0 1 2 

5 2 1 2 1 0 1 

6 3 2 1 2 1 0 

 

Table 2(b) Flow matrix: period 1 
To 

From 
1 2 3 4 5 6 

1 0 90 689 194 165 494 

2 668 0 1324 811 241 206 

3 631 387 0 125 281 375 

4 80 495 615 0 222 221 

5 276 204 1127 490 0 676 

6 109 409 1780 394 200 0 

 

Table 2(c) Flow matrix: period 2 
To 

From 
1 2 3 4 5 6 

1 0 257 1632 330 117 285 

2 159 0 1309 297 803 404 

3 98 82 0 271 222 383 

4 110 404 1174 0 750 386 

5 73 507 1679 190 0 107 

6 152 487 355 646 315 0 

 

Table 2(d) Flow matrix: period 3 
To 

From 
1 2 3 4 5 6 

1 0 1112 505 422 414 132 

2 627 0 560 99 227 86 

3 373 2007 0 235 384 205 

4 482 1638 262 0 233 129 

5 223 1196 520 55 0 75 

6 200 782 271 292 235 0 

 

Table 2(e) Flow matrix: period 4 
To 

From 
1 2 3 4 5 6 

1 0 1348 490 447 186 169 

2 625 0 74 307 777 326 

3 114 1645 0 288 975 68 

4 156 578 447 0 554 212 

5 353 732 118 373 0 283 

6 328 1071 387 352 199 0 

 

Table 2(f) Flow matrix: period 5 
To 

From 
1 2 3 4 5 6 

1 0 159 1103 218 297 95 

2 631 0 1618 95 253 109 

3 552 213 0 432 397 141 

4 418 122 797 0 108 495 

5 115 154 1610 425 0 158 

6 167 214 2092 471 323 0 

 

Table 2(g) Rearrangement costs 
Department 1 2 3 4 5 6 

Rearrangemen

t Cost 

89

8 

91

1 

62

7 

53

8 

73

8 

97

7 

 
3.7.1Working of the proposed algorithm 

1. Generate population ∅ =

{

5 3 6 1 2 4 5 3 4 1 2 6 5 3 4 1 2 6 5 3 4 1 2 6 5 3 4 1 2 6 
2 3 1 4 5 6 2 3 1 4 5 6 2 3 6 1 5 4 2 3 6 1 5 4 2 3 6 1 5 4

⋮
2 3 1 4 5 6 1 3 4 2 5 6 1 2 4 5 3 6 1 2 4 5 3 6 1 2 4 5 3 6

} 

of size d × p / 2 (= 15 for this problem) solutions by 

random permutations. Each solution consists of 30 

numbers out of which, the first six numbers 

represent the order of arrangement of six facilities 

during the first period and the next six numbers 

represent the order of arrangement of six facilities 

during the second period and so on.  
2. Determine the objective function value (the cost 

associated with the solution) by summing the 

transportation cost and rearrangement cost for each 

of the five periods. 

∅𝑇𝐶 = {

108053
109847

⋮
108296

} 

And evaluate the fitness of each solution as 1/objective 

function value (cost associated with the solution). 

3. Run the selection, crossover and mutation 

operations as described in the methodology section. 

4. Execute the PWX LS on each of the solutions 

within the population. 

𝛷 = {

4 2 5 6 3 1 4 2 5 6 3 1 4 2 5 6 3 1 4 2 5 6 3 1 4 2 5 6 3 1
5 3 1 4 2 6 5 3 1 4 2 6 5 3 6 4 2 1 5 3 6 4 2 1 5 3 6 4 2 1

⋮
2 3 1 4 5 6 1 3 4 2 5 6 1 2 4 5 3 6 1 2 4 5 3 6 1 2 4 5 3 6

} 

5. Determine the objective function value by adding 

the transportation cost and rearrangement cost for 

each of the five periods. 

𝛷𝑇𝐶 = {

108024
108111

⋮
108053

} 

6. Check for the termination criterion (TC), i.e., 

whether the current generation number is < the 

maximum number of generations (= 10 × d × p). If 

TC are met, end the algorithm and report the results, 

else calculate the fitness value for the objective 

function values and repeat steps 3 to 6. 
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3.8Experimental setup and parameters 

The various parameters and operators employed in the 

proposed hGA are listed in Table 3. These parameters 

are obtained from the works of Pradeepmon et al. [43]. 

The proposed hGA is coded in Matlab, run on the 

Pentium 4, 2.60 GHz, 2 GB RAM processor and each 

of the 48 test instances are solved. The 48 test 

instances available fall into six different problem sizes 

with each problem size having eight different test 

instances. The six problem sizes of the test instances 

are 6d × 5p, 6d × 10p, 15d × 5p, 15d × 10p, 30d × 5p 

and 30d × 10p, where d in the problem size represents 

the number of departments and p represents the 

number of periods. The test instances are obtained 

from Balakrishnan and Cheng [12]. 

 

Table 3 Selected operations and parameters for hGA 

S. No. Parameter / Operator Value 

1 Population Size d × p / 2 

2 Mutation Probability 0.04 

3 Crossover Probability 0.9 

4 Termination Criterion Number of Generations = 10 × d × p 

5 Selection Procedure RWS 

6 Crossover Operator SPC 

7 Mutation Operator SM 

8 Offspring Insertion Strategy Parent replacement strategy 

9 LS Method PWX LS 

10 Fitness value The inverse of the cost associated with the solution 
d represents the number of departments and p represents the number of periods 

 

For each test instance, ten solution runs are performed, 

and the resulting minimum and average costs are 

documented, along with a comparison to the best-

known solutions found in the literature. 

 

4.Results  
Figure 4 represents a sample convergence graph of the 

algorithm for the 30d × 5p sized problems considered 

in this work. The graphs depict the average cost 

associated with the solutions over generations for the 

problem size 30d × 5p. Only the first instance is 

considered as a sample for plotting the convergence 

graph. The results of the experiments are presented in 

Table 4, which includes the minimum and average 

values achieved over ten algorithm trials for each test 

instance along with the reported average run time of 

the algorithm. Table 5 displays a comprehensive 

comparison between the best solutions achieved and 

the best-known solutions from the literature. This 

comparison encompasses the results of the proposed 

algorithm and those published in various references, 

including Conway and Venkataraman (CVGA) [21], 

Mckendall et al. (modified simulated annealing (Mod 

SA))[24], McKendall and Shang (hybrid ant system 

(HAS))[33], Sahin and Turkbey (tabu list simulated 

annealing (TABUSA))[44], Nahas et al. (iterated great 

deluge (IGD))[26], Pillai et al. (simulated annealing 

(SA)) [15], Mckendall and Liu (heuristic tabu 

(HTABU))[45], Hosseini-nasab and Emami (hybrid 

particle swarm optimization (HPSO))[46], Turanoglu 

and Akkaya (simulated annealing bacterial foraging 

optimization (SABFO))[47], Zouein and Kattan 

(improved ant colony optimization (ASCOII))[29]. 

Notably all of these solution methodologies except for 

Pillai et al., employ adaptive approaches, while Pillai 

et al. utilizes a robust method for achieving near-

optimal solutions. Detailed results of this comparison 

can be found in Tables 5(a) to 5(f). 

 

Figure 5 represents the percentage deviation of the 

solutions obtained by hGA from the best-known 

solutions available in the literature. Even though the 

solutions obtained for higher-sized problems are not as 

good as those provided in the literature, the simple 

hybridisation procedure provides near-optimal 

solutions. Table 6 provides the comparison of 

solutions obtained using the hGA and SGA. From the 

table, it is evident that the results obtained using hGA 

are far better than those obtained using SGA. Figure 6 

illustrates the average percentage deviation of 

solutions obtained with hGA in comparison to those 

obtained with SGA. In Figure 6, the horizontal axis 

labels 1 to 8 represent the eight instances and 9 

represents the average value over the eight instances. 
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Figure 4 Average cost associated with the solutions over generations for the problem size 30d × 5p instance 1 

 

Table 4 Minimum and average values and run time in seconds for the 48 test instances 

Instance Description 
Problem Size 

6d × 5p 6d × 10p 15d × 5p 15d × 10p 30d × 5p 30d × 10p 

1 

Minimum 106419 215143 483473 996130 588103 1197060 

Average 107624.6 217141.3 487718.1 997634.4 590614.9 1198805.1 

Run Time (s) 0.1 1.6 6.9 108.9 217.8 3616.9 

2 

Minimum 104834 212402 490757 990136 582605 1193757 

Average 105183.8 213861.4 491781.8 994215 585180.8 1198392.9 

Run Time (s) 0.1 1.5 7.0 110.9 219.7 3674.3 

3 

Minimum 104320 208605 496085 997860 586718 1185609 

Average 104745 209564.1 497083.3 1001937.3 587616.3 1189150 

Run Time (s) 0.1 1.5 7.0 104.2 223.3 3804.1 

4 

Minimum 106399 213858 489459 988390 577715 1171244 

Average 106631.4 214916.2 491461.1 990260.4 578618.3 1175855.7 

Run Time (s) 0.1 1.4 7.0 104.3 225.7 3745.8 

5 

Minimum 105628 211242 491444 991279 567854 1157242 

Average 106202.2 212827.2 493798.9 994503.1 571010.1 1160000.9 

Run Time (s) 0.1 1.5 7.0 104.9 221.5 3737.0 

6 

Minimum 103985 210707 492129 985221 577964 1173757 

Average 104748.9 211678.4 493306.2 987158.4 579492.1 1176024.5 

Run Time (s) 0.1 1.5 6.8 101.2 219.9 3665.9 

7 

Minimum 106439 215045 491214 992281 580421 1179738 

Average 107275.8 217440.3 492598.9 995177.3 582873.7 1184161.1 

Run Time (s) 0.1 1.5 6.8 101.2 225.4 3566.6 

8 

Minimum 103771 213900 496601 995096 586862 1192914 

Average 105112.6 216418.2 498004.6 997918.9 587649.7 1193989.9 

Run Time (s) 0.1 1.4 6.8 101.5 221.9 3628.8 
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Table 5(a) Comparison of results obtained using hGA with other results available in the literature for 6d × 5p  
Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 

 
6

 D
ep

a
rt

m
en

t 
a
n

d
 5

 P
er

io
d

 

CVGA [21] 1,08,976 1,05,170 1,04,520 1,06,719 1,05,628 1,05,606 1,06,439 1,04,485 

A
v

er
a

g
e 

%
 D

ev
ia

ti
o
n

 

Mod SA [24] 1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771 

HAS [33] 1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771 

TABUSA [44] 1,06,419 1,04,834 1,04,320 1,06,399 1,05,737 1,03,985 1,06,439 1,03,771 

IGD [26] 1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771 

SA [15] 1,06,419 1,05,731 1,07,650 1,08,260 1,08,188 1,07,765 1,08,114 1,07,248 

HTABU [45] 1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771 

HPSO [46] 1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771 

SABFO [47] 1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771 

ACOII [29] 1,06,419 1,03,507 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771 

Best Cost 1,06,419 1,03,507 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771 

hGA 1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771 

% Deviation 0.00 1.28 0.00 0.00 0.00 0.00 0.00 0.00 0.16 

 

Table 5(b) Comparison of results obtained using hGA with other results available in the literature for 6d × 10p 

 Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8  

6
 D

ep
ar

tm
en

t 
an

d
 1

0
 P

er
io

d
 

CVGA [21] 2,18,407 2,15,623 2,11,028 2,17,493 2,15,363 2,15,564 2,20,529 2,16,291 

A
v

er
a

g
e 

%
 D

ev
ia

ti
o
n

 

Mod SA [24] 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588 

HAS [33] 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588 

TABUSA [44] 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588 

IGD [26] 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588 

SA [15] 2,20,776 2,17,412 2,19,024 2,17,350 2,17,142 2,17,397 2,19,788 2,20,144 

HTABU [45] 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588 

HPSO [46] 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588 

SABFO [47] 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588 

ACOII [29] 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588 

Best Cost 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588 

hGA 2,15,143 2,12,402 2,08,605 2,13,858 2,11,242 2,10,707 2,15,045 2,13,900 

% Deviation 0.39 0.13 0.30 0.62 0.16 0.37 0.37 0.62 0.37 

 

Table 5(c) Comparison of results obtained using hGA with other results available in the literature for 15d × 5p 

 Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8  

1
5

 D
ep

ar
tm

en
t 

an
d

 5
 P

er
io

d
 

CVGA [21] 5,04,759 5,14,718 5,16,063 5,08,532 5,15,599 5,09,384 5,12,508 5,14,839 

A
v

er
a

g
e 

%
 D

ev
ia

ti
o
n

 

Mod SA [24] 4,80,453 4,84,761 4,88,748 4,84,405 4,87,882 4,87,147 4,86,779 4,90,812 

HAS [33] 4,80,453 4,84,761 4,88,748 4,84,446 4,87,722 4,86,685 4,86,853 4,91,016 

TABUSA [44] 4,80,453 4,84,761 4,89,058 4,84,446 4,87,822 4,86,493 4,86,268 4,90,551 

IGD [26] 4,80,453 4,84,761 4,89,058 4,84,446 4,87,822 4,86,493 4,86,268 4,90,812 

SA [15] 5,06,847 5,00,284 5,08,011 5,03,699 5,02,622 4,99,891 5,02,919 5,07,970 

HTABU [45] 4,80,453 4,84,761 4,88,748 4,84,446 4,87,911 4,86,493 4,86,592 4,90,812 

HPSO [46] 4,80,453 4,78,310 4,86,987 4,83,813 4,84,968 4,86,493 4,85,384 4,89,150 

SABFO [47] 4,80,453 4,84,853 4,89,981 4,86,006 4,88,556 4,88,196 4,87,476 4,91,789 

ACOII [29] 4,80,453 4,84,761 4,88,748 4,84,446 4,87,753 4,86,493 4,86,732 4,90,551 

Best Cost 4,80,453 4,78,310 4,86,987 4,83,813 4,84,968 4,86,493 4,85,384 4,89,150 

hGA 4,83,473 4,90,757 4,96,085 4,89,459 4,91,444 4,92,129 4,91,214 4,96,601 

% Deviation 0.63 2.60 1.87 1.17 1.34 1.16 1.20 1.52 1.44 

 

Table 5(d) Comparison of results obtained using hGA with other results available in the literature for 15d × 10p 

 Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8  

1
5

 D
ep

ar
tm

en
t 

an
d

 1
0

 P
er

io
d
 

CVGA [21] 
10,55,53

6 

10,61,94

0 

10,73,60

3 

10,60,03

4 

10,64,69

2 

10,66,37

0 

10,66,61

7 

10,68,21

6 

A
v

er
a

g
e 

%
 

D
ev

ia
ti

o
n

 

Mod SA 

[24] 
9,79,468 9,78,065 9,82,396 9,72,797 9,77,188 9,67,617 9,79,114 9,83,672 

HAS [33] 9,80,351 9,78,271 9,78,027 9,74,694 9,79,196 9,71,548 9,80,752 9,85,707 
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 Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8  

TABUSA 

[44] 
9,78,848 9,77,338 9,81,172 9,71,720 9,76,781 9,68,362 9,78,660 9,82,880 

IGD [26] 9,78,848 9,78,304 9,81,172 9,71,759 9,77,234 9,68,067 9,78,930 9,82,888 

SA [15] 
10,59,10

0 

10,22,44

7 

10,68,40

2 

10,54,99

7 

10,51,39

5 

10,57,54

3 

10,37,06

6 

10,40,45

0 

HTABU 

[45] 
9,81,412 9,78,004 9,83,109 9,71,720 9,77,100 9,71,287 9,78,576 9,83,341 

HPSO [46] 9,78,588 9,76,208 9,78,027 9,71,759 9,76,119 9,68,539 9,78,519 9,82,964 

SABFO 

[47] 
9,82,087 9,79,095 9,82,914 9,74,144 9,79,376 9,70,247 9,83,527 9,84,664 

ACOII [29] 9,79,081 9,77,338 9,81,172 9,71,720 9,76,310 9,67,617 9,78,576 9,84,025 

Best Cost 9,78,588 9,76,208 9,78,027 9,71,720 9,76,119 9,67,617 9,78,519 9,82,880 

hGA 9,96,130 9,90,136 9,97,860 9,88,390 9,91,279 9,85,221 9,92,281 9,95,096 

% 

Deviation 
1.79 1.43 2.03 1.72 1.55 1.82 1.41 1.24 

1.6

2 

 
Table 5(e) Comparison of results obtained using hGA with other results available in the literature for 30d × 5p 

 Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8  

3
0

 D
ep

ar
tm

en
t 

an
d

 5
 P

er
io

d
 

CVGA [21] 6,32,737 6,47,585 6,42,295 6,34,626 6,39,693 6,37,620 6,40,482 6,35,776 

A
v

er
a

g
e 

%
 D

ev
ia

ti
o
n

 

Mod SA [24] 5,76,039 5,68,095 5,73,739 5,66,248 5,58,460 5,66,077 5,67,131 5,73,755 

HAS [33] 5,76,886 5,70,349 5,76,053 5,66,777 5,58,353 5,66,762 5,67,131 5,75,280 

TABUSA [44] 5,74,624 5,68,256 5,72,865 5,66,231 5,57,356 5,66,599 5,67,628 5,73,487 

IGD [26] 5,75,386 5,69,045 5,72,104 5,64,398 5,55,555 5,64,124 5,67,775 5,72,802 

SA [15] 5,79,704 5,76,350 5,86,831 5,84,318 5,70,492 5,72,782 5,71,703 5,96,835 

HTABU [45] 5,74,657 5,67,481 5,71,462 5,64,868 5,55,628 5,65,100 5,66,993 5,73,023 

HPSO [46] 5,77,248 5,69,175 5,72,105 5,66,124 5,55,551 5,64,804 5,67,131 5,73,755 

SABFO [47] 5,78,415 5,70,630 5,77,390 5,68,289 5,58,345 5,72,536 5,69,993 5,77,873 

ACOII [29] 5,73,722 5,66,776 5,65,411 5,64,171 5,54,281 5,64,110 5,64,682 5,72,207 

Best Cost 5,73,722 5,66,776 5,65,411 5,64,171 5,54,281 5,64,110 5,64,682 5,72,207 

hGA 5,88,103 5,82,605 5,86,718 5,77,715 5,67,854 5,77,964 5,80,421 5,86,862 

% Deviation 2.51 2.79 3.77 2.40 2.45 2.46 2.79 2.56 2.72 

 
Table 5(f) Comparison of results obtained using hGA with other results available in the literature for 30d × 10p 

 Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8  

3
0

 D
ep

ar
tm

en
t 

an
d

 1
0
 P

er
io

d
 

CVGA [21] 
13,62,51

3 

13,79,64

0 

13,65,02

4 

13,67,13

0 

13,56,86

0 

13,72,51

3 

13,82,79

9 

13,83,61

0 

A
v

er
a

g
e 

%
 D

ev
ia

ti
o
n

 

Mod SA [24] 
11,63,22

2 

11,61,52

1 

11,56,91

8 

11,45,91

8 

11,26,43

2 

11,45,14

6 

11,40,74

4 

11,61,43

7 

HAS [33] 
11,66,16

4 

11,68,87

8 

11,66,36

6 

11,48,20

2 

11,28,85

5 

11,41,34

4 

11,40,77

3 

11,66,15

7 

TABUSA 

[44] 

11,61,75

1 

11,60,65

6 

11,55,40

6 

11,44,82

1 

11,25,96

8 

11,43,48

0 

11,45,83

0 

11,64,32

2 

IGD [26] 
11,57,88

7 

11,58,24

3 

11,55,31

9 

11,40,39

5 

11,23,38

5 

11,40,72

3 

11,45,09

8 

11,62,70

0 

SA [15] 
11,72,69

1 

11,82,28

6 

11,88,62

0 

11,98,48

7 

11,98,67

4 

12,02,03

3 

12,10,57

3 

12,09,08

8 

HTABU [45] 
11,59,58

9 

11,57,94

2 

11,54,79

9 

11,43,11

0 

11,23,44

6 

11,41,14

4 

11,45,95

1 

11,60,48

4 

HPSO [46] 
11,60,38

8 

11,58,24

3 

11,56,19

8 

11,49,75

3 

11,23,67

3 

11,47,93

5 

11,42,03

1 

11,60,65

8 

SABFO [47] 
11,68,45

3 

11,70,04

2 

11,60,20

4 

11,49,94

4 

11,32,13

6 

11,44,67

7 

11,60,83

0 

11,72,85

7 

ACOII [29] 
11,57,70

3 

11,56,90

0 

11,52,54

6 

11,41,14

9 

11,19,49

6 

11,40,88

3 

11,44,72

7 

11,06,65

1 
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 Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8  

Best Cost 
11,57,70

3 

11,56,90

0 

11,52,54

6 

11,40,39

5 

11,19,49

6 

11,40,72

3 

11,40,74

4 

11,06,65

1 

hGA 
11,97,06

0 

11,93,75

7 

11,85,60

9 

11,71,24

4 

11,57,24

2 

11,73,75

7 

11,79,73

8 

11,92,91

4 

% Deviation 3.40 3.19 2.87 2.71 3.37 2.90 3.42 7.79 
3.7

1 

 

Table 6 Comparison of results obtained using hGA with that using simple genetic algorithm (SGA) 

 Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8  

6
d

 ×
 5

p
 

SGA 1,16,485 1,13,061 1,11,989 1,18,608 1,14,450 1,14,642 1,16,045 1,14,686 Averag

e hGA 1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771 

% 

Deviation 
-8.64 -7.28 -6.85 -10.29 -7.71 -9.30 -8.28 -9.52 -8.48 

6
d

 ×
 1

0
p

 SGA 2,42,166 2,36,601 2,38,773 2,45,369 2,42,769 2,40,554 2,44,123 2,43,187 Averag

e hGA 2,15,143 2,12,402 2,08,605 2,13,858 2,11,242 2,10,707 2,15,045 2,13,900 

% 

Deviation 
-11.16 -10.23 -12.63 -12.84 -12.99 -12.41 -11.91 -12.04 -12.03 

1
5

d
 ×

 5
p

 

SGA 5,52,377 5,53,215 5,57,421 5,53,667 5,52,013 5,52,713 5,53,560 5,58,456 Averag

e hGA 4,83,473 4,90,757 4,96,085 4,89,459 4,91,444 4,92,129 4,91,214 4,96,601 

% 

Deviation 
-12.47 -11.29 -11.00 -11.60 -10.97 -10.96 -11.26 -11.08 -11.33 

1
5

d
 ×

 1
0

p
 SGA 

11,42,20

6 

11,38,46

5 

11,47,04

8 

11,39,57

8 

11,44,12

4 

11,31,68

1 

11,30,85

6 

11,32,65

6 
Averag

e 
hGA 9,96,130 9,90,136 9,97,860 9,88,390 9,91,279 9,85,221 9,92,281 9,95,096 

% 

Deviation 
-12.79 -13.03 -13.01 -13.27 -13.36 -12.94 -12.25 -12.14 -12.85 

3
0

d
 ×

 5
p

 SGA 6,80,790 6,83,892 6,78,446 6,76,468 6,73,117 6,79,331 6,86,388 6,85,919 Averag

e hGA 5,88,103 5,82,605 5,86,718 5,77,715 5,67,854 5,77,964 5,80,421 5,86,862 

% 

Deviation 
-13.61 -14.81 -13.52 -14.60 -15.64 -14.92 -15.44 -14.44 -14.62 

3
0

d
 ×

 1
0

p
 

SGA 
14,06,55

7 

14,09,61

7 

13,99,76

3 

14,03,82

6 

13,98,03

5 

14,02,85

4 

14,11,01

0 

14,01,96

7 Averag

e 
hGA 

11,97,06

0 

11,93,75

7 

11,85,60

9 

11,71,24

4 

11,57,24

2 

11,73,75

7 

11,79,73

8 

11,92,91

4 

% 

Deviation 
-14.89 -15.31 -15.30 -16.57 -17.22 -16.33 -16.39 -14.91 -15.87 

 

 
Figure 5 Percentage deviation between the solutions obtained through hGA and the best-known solutions is being 

assessed 
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Figure 6 Percentage deviation of solutions obtained using hGA over that using SGA 

 

5.Discussions  

The experimental results encompass an analysis of 

convergence behaviour, solution quality, and 

comparative performance with existing 

methodologies. Firstly, Figure 4 illustrates the 

convergence trajectory of the algorithm for a 

representative problem size (30d × 5p). The graph 

showcases the average cost associated with solutions 

across generations, providing insights into the 

algorithm's convergence dynamics which displays the 

algorithm's convergence behaviour and its efficiency 

in finding optimal or near-optimal solutions. Moving 

to Table 4, which summarizes the minimum and 

average solution values obtained over ten algorithm 

trials for each test instance along with the average 

runtime. This table offers a comprehensive overview 

of the algorithm's performance across different 

problem instances, shedding light on its consistency 

and computational efficiency. Table 5 presents a 

comparative analysis between the solutions achieved 

by the proposed algorithm and the best-known 

solutions reported in the literature. This comparison, 

spanning various methodologies, offers valuable 

insights into the efficacy of the proposed approach. 

Notably, while the solutions obtained for higher-sized 

problems may not match those in the literature, the 

hGA demonstrates its capability in providing near-

optimal solutions, particularly through its 

hybridization strategy. Figure 5 further elucidates the 

percentage deviation of solutions obtained by the hGA 

from the best-known solutions in the literature. 

Despite discrepancies, especially for larger problem 

sizes, the hGA's simple hybridization technique 

proves effective in yielding solutions close to 

optimality. Table 6 extends the discussion by 

comparing the solutions obtained using the hGA with 

those obtained using a SGA. The results showcase the 

superiority of the hGA over SGA, emphasizing the 

effectiveness of the hybrid approach in enhancing 

solution quality. Moreover, Figure 6 offers a visual 

representation of the average percentage deviation of 

solutions obtained by the hGA compared to SGA 

across different instances. This graphical depiction 

underscores the consistent performance improvement 

achieved by the hGA over its standard counterpart. 

 

This study utilized parameters from another published 

work by Pradeepmon et al. [43], which were initially 

derived for optimizing the GA used for QAPs. 

However, it would have been more appropriate if these 

parameters had been specifically tailored for 

optimizing the GA for DFLPs. Additionally, a 

limitation of the current research is that the proposed 

algorithm was only applied to DFLPs, and its 

effectiveness in solving other types of combinatorial 

optimization problems has not been evaluated. A 

complete list of abbreviations is listed in Appendix I. 

 

6.Conclusion and future work 
In this work, hGA is proposed for solving DFLPs. The 

hGA incorporates basic genetic operations along with 

a LS procedure. The algorithm is applied to 48 test 

instances, with the minimum and average values 

obtained over ten runs reported for each instance. 

Additionally, the average time taken to achieve these 

results is documented. The results demonstrate that the 

hGA consistently delivers solutions that are within 

four percent of the best-known solutions for all test 

instances, with the average percentage deviation 

ranging from 0% for smaller instances to 3.71% for 

-18.00
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-14.00

-12.00
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-6.00

-4.00
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larger ones. Although the average runtime for these 

instances is mentioned, it is not compared with other 

published times due to significant variations in 

machine configurations used in different studies, 

rendering such comparisons irrelevant. While the 

results for larger test instances show some deviation 

from the best-known solutions, the hGA proves 

effective at solving DFLPs to near-optimal levels 

efficiently.    

Future works may focus on: 

· Further hybridizing the SGA with other algorithms 

or incorporating advanced search techniques like 

VNS into the GA framework. 

· Integrating machine learning techniques such as 

clustering algorithms to select candidates for LS, 

which could improve runtime. 

· Applying the proposed hGA to solve unequal area 

DFLPs, opening up new research possibilities. 
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Appendix I 
S. No. Abbreviation Description 

1 ASCOII Improved Ant Colony 

Optimization 

2 COFAD Computerized Facilities Design 

3 CRAFT Computerized Relative Allocation 
of Facilities Technique 

4 CVGA Conway and Venkatraman Genetic 

Algorithm 

5 DERFLP Dynamic Extended Row Facility 
Layout Problem 

6 DFLP                                Dynamic Facility Layout Problem                                

7 DP Dynamic Programming 

8 EDA Estimation of Distribution 
Algorithm 

9 FLP Facility layout problem 

10 GA Genetic algorithm 

11 HAS Hybrid Ant System 

12 hGA Hybrid Genetic Algorithm 

13 HPSO Hybrid Particle Swarm 
Optimization 

14 HTABU Heuristic Tabu 

15 IGD Iterated Great Deluge 

16 LS Local Search   

17 MHC Material Handling Cost 

18 Mod SA Modified Simulated Annealing 

19 PWX Pair-Wise Exchange 

20 QAP Quadratic Assignment Problem 

21 QIP Quadratic Integer Programming 

22 RWS Roulette Wheel Selection   

23 SA Simulated Annealing 

24 SABFO Simulated Annealing Bacterial 

Foraging Optimization 

25 SFLP Static Facility Layout Problem 

26 SGA Simple Genetic Algorithm  

27 SM Swap Mutation  

28 SPC Single Point Crossover 

29 TABUSA Tabu List Simulated Annealing  

30 TC Termination criteria  

31 VNS Variable neighbourhood search 
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