
International Journal of Advanced Technology and Engineering Exploration, Vol 11(115)

ISSN (Print): 2394-5443 ISSN (Online): 2394-7454

http://dx.doi.org/10.19101/IJATEE.2023.10102424

899

Optimizing dynamic facility layout problems: genetic algorithm with local

search integration

Vineetha G. R1* and Shiyas C. R2

Research Scholar, Department of Computer Science and Engineering, Cochin University College of Engineering,

Kuttanad, Pulincunnu, Kerala, India1

Associate Professor, Department of Mechanical Engineering, Cochin University College of Engineering, Kuttanad,

Pulincunnu, Kerala, India2

Received: 15-October-2023; Revised: 18-June-2024; Accepted: 21-June-2024

©2024 Vineetha G. R and Shiyas C. R. This is an open access article distributed under the Creative Commons Attribution (CC

BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1.Introduction
The facility layout problem (FLP) revolves around the

optimization of the arrangement of various elements

within a manufacturing or distribution system. These

elements can include machinery, production

departments, and storage areas like warehouses. The

primary objective in solving the FLP is to minimize

the total material handling cost (MHC) involved in the

system operation. MHCs encompasses various

expenses related to moving materials or products

within the facility, such as labour, equipment

maintenance, and transportation [1].

*Author for correspondence

MHCs is a significant concern for businesses, as they

represent non-value-added expenses, which means

they do not directly contribute to the product's value.

These costs can account for a substantial portion of a

manufacturing system's overall operating expenses,

ranging from 20% to 50% [2]. Moreover, in the

context of product cost, they can make up a significant

share, varying from 15% to 70% [2].

Therefore, optimizing facility layouts to reduce MHCs

is critical for enhancing operational efficiency, cost-

effectiveness, and overall competitiveness in

manufacturing and distribution industries. By

implementing an effective layout, 10-30% of this cost

can be decreased, while also contributing to the

Research Article

Abstract
The dynamic facility layout problem (DFLP) is one of the most complex combinatorial optimization challenges. Given that

obtaining optimal solutions using exact methods requires substantial time and computational power, researchers often turn

to nonconventional optimization techniques to achieve near-optimal solutions. This paper presents a genetic algorithm

(GA) enhanced with a local search (LS) procedure for solving DFLPs. The algorithm employs roulette wheel selection

(RWS), single-point crossover (SPC), and swap mutation (SM) as its genetic operators, with the 2opt neighborhood search

serving as the LS operator. The termination criterion (TC) used in the proposed algorithm is the maximum number of

generations. An extensive evaluation of the algorithm's performance was conducted in this research. It was tested on a

diverse set of 48 problem instances, representing various problem sizes. To assess the effectiveness of the algorithm, the

results produced were compared with those documented in existing literature and benchmarked against the best-known

solutions previously reported. This rigorous comparison allows for an evaluation of the algorithm's performance relative

to other established methods and state-of-the-art solutions available in the field. Through extensive experimentation on 48

test instances, the algorithm consistently delivers competitive results, achieving solutions within a margin of less than four

percent deviation from the best-known solutions across all instances, with an average deviation ranging from 0% to 3.71%.

Although the average runtime of the algorithm is provided, its comparison with existing literature is deemed irrelevant due

to significant variations in machine configurations. This work introduces a hybrid genetic algorithm (hGA) specifically

designed for solving DFLPs. By integrating fundamental genetic operations with a localized search approach, the proposed

hGA demonstrates promising capabilities in tackling this complex optimization problem. The outcomes affirm the efficacy

of the hGA in swiftly converging to near-optimal solutions for DFLPs, underscoring its potential for practical applications.

Keywords
Dynamic facility layout problem, Hybrid genetic algorithm, Local search, Roulette wheel selection, Swap mutation.

Vineetha G. R and Shiyas C. R

900

system's overall efficiency [2]. In the manufacturing

industry, the layout of a plant is a decision to be made

over time, since changing the layout involves a

substantial investment that is not easily recouped [3].

1.1Challenges in dynamic facility layout problem

(DFLP)

FLPs encompass a range of challenges related to

optimizing the arrangement of elements within a

facility. There are two primary categories of these

problems based on the nature of the data used to devise

the layout. Static facility layout problems (SFLP) are

the first category, characterized by fixed schedules and

based on flow data that do not change over time [4].

The second category is DFLP, which, for each

planning period, has different flow patterns and as a

result, may require changes in facility layout [5]. The

objective of SFLP is to minimize the total material cost

by positioning N different facilities in N possible

locations.

SFLP belongs to the realm of combinatorial

optimization problems, a field that has received

extensive attention for many years. It is frequently

represented as a quadratic assignment problem (QAP),

initially formulated by Koopmans and Beckmann in

1957 [6]. Sahni and Gonzalez [7] established the NP-

hardness of the QAP, demonstrating that obtaining an

approximation close to the optimal solution is not

achievable in polynomial time. Despite extensive

research on the QAP, there is currently no exact

algorithm capable of efficiently solving problems with

sizes beyond N > 30, as observed by Loiola et al. [8].

QAP is still widely regarded as one of the most

difficult combinatorial optimization problems. The

DFLP was first defined and addressed by Rosenblatt

[9]. The DFLP is an extension of the SFLP in which

the layout of the facility under consideration remains

the same throughout all the planning periods under

consideration. The objective of SFLP is to minimize

the total MHC by positioning N different facilities in

N possible locations. The SFLP is commonly

formulated as QAPs introduced by Koopmans and

Beckmann [6]. The QAP is considered one of the most

difficult to solve combinatorial optimization

problems.

In the case of DFLP, the layout of the facility changes

from period to period. Thus, the total cost involved in

a DFLP has two components namely, MHC – to

transport items between the departments and re-

arrangement cost – to rearrange the facilities as the

planning periods change [10]. The mathematical

representation of the DFLP, initially proposed by

Balakrishnan [11] is presented in Equation 1. It’s

worth mentioning that this particular formulation

signifies an extension of the quadratic integer

programming (QIP) framework employed in solving

the QAP.

Minimize

𝑍 = ∑ ∑ ∑ ∑ 𝐴𝑡𝑖𝑗𝑙𝑌𝑡𝑖𝑗𝑙
𝑁
𝑙=1

𝑁
𝑗=1

𝑁
𝑖=1

𝑇
𝑡=2 +

∑ ∑ ∑ ∑ ∑ 𝐶𝑡𝑖𝑗𝑘𝑙
𝑁
𝑙=1 𝑋𝑡𝑖𝑗𝑋𝑡𝑘𝑙

𝑁
𝑘=1

𝑁
𝑗=1

𝑁
𝑖=1

𝑇
𝑡=1 (1)

subject to

∑ 𝑋𝑡𝑖𝑗 = 1, 𝑖 = 1, 2, . . . , 𝑁 𝑎𝑛𝑑 𝑡 = 1, 2, . . . , 𝑇

𝑁

𝑗=1

 (2)

∑ 𝑋𝑡𝑖𝑗 = 1, 𝑗 = 1, 2, . . . , 𝑁 𝑎𝑛𝑑 𝑡 = 1, 2, . . . , 𝑇𝑁
𝑖=1

 (3)

𝑌𝑡𝑖𝑗𝑙 = 𝑋(𝑡−1)𝑖𝑗𝑋𝑡𝑖𝑙 , 𝑖, 𝑗, 𝑙 = 1, 2, . . . , 𝑁, 𝑡 =

 1, 2, . . . , 𝑇 (4)

𝑋𝑡𝑖𝑗 = {0, 1} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗, 𝑡 (5)

𝑌𝑡𝑖𝑗𝑙 = {0, 1} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗, 𝑙, 𝑡 (6)

where

m = Number of departments and locations.

T = Number of periods.

Atijl = Cost of shifting department i from location

j to l in period t (where Atijj= 0).

Ctijkl = Cost of material flow between department

i located at location j and k located at l in period

t.

𝑋𝑡𝑖𝑗

= {
1 if department 𝑖 is assigned to location 𝑗 at period 𝑡

0 otherwise

𝑌𝑡𝑖𝑗𝑙 =

{
1 if department 𝑖 is shifted from location 𝑗

 to 𝑙 at the beginning of period 𝑡
0 otherwise

The goal of Equation 1 is to reduce the total costs

associated with both rearranging departments and the

flow of materials between them. Constraint set

Equation 2 assures that each location is exclusively

assigned to one department during each period, while

constraint set Equation 3 guarantees that each location

is allocated to precisely one department for each

period. Constraint set Equation 4 allows for the

inclusion of rearrangement costs when a department is

relocated between locations in consecutive periods,

merging them with material flow costs. Constraints

Equation 5 and Equation 6 enforce the required

restrictions on the decision variables.

International Journal of Advanced Technology and Engineering Exploration, Vol 11(115)

901

In this study, a hGA combining GA with local search

(LS) is introduced to solve the DFLP. To evaluate the

effectiveness of the proposed method, the hGA is

applied to a set of 48 benchmark test instances for

DFLPs provided by Balakrishnan and Cheng [12].

This application demonstrates the effectiveness of the

hGA in optimizing complex layout configurations

over time.

The remaining sections of the paper are structured as

follows: Section 2 offers an overview of prior research

on DFLP. Section 3 explains the fundamental

principles of the proposed hGA and the diverse

parameters and operators employed in the hGA,

section 4 outlines the experimental methodology and

in section 5, the results and associated discussions are

presented. Finally, section 6 provides the paper’s

conclusion.

2.Literature review
In the context of DFLP, two primary categories of

solutions have emerged: agile (or adaptive) and robust

strategies. These approaches differ in their handling of

layout changes and are selected based on specific

considerations and constraints [13, 14]. The agile

approach involves frequently adjusting the facility

layout after each period within the planning horizon to

accommodate changing flow patterns or operational

requirements. This method, while effective in

optimizing layouts to suit evolving conditions,

typically incurs higher relocation costs. It is preferred

when relocation costs are low and the facility can

easily adapt to changes [15]. In contrast, the robust

approach maintains a static layout throughout the

planning horizon, designed to minimize total MHCs

across all periods despite changing conditions. This

strategy avoids the disruptions of frequent layout

changes and is chosen when stability and consistency

are crucial, and relocation costs are high. The decision

between agile and robust strategies depends on factors

such as facility nature, relocation costs, required

flexibility, and tolerance for disruptions. Agile

strategies are advantageous when relocation costs are

low and adaptation needs are high, as they allow for

cost-efficient, quick adjustments, and long-term

savings. Thus, agile strategies are ideal for scenarios

with low relocation costs, short adjustment times, and

uncertain future planning periods, enabling facilities to

stay flexible and efficient [16].

Ballou [17] provides a dynamic programming (DP)

approach for determining the best site for a dynamic

warehouse. This study can be seen as a catalyst for

further research into dynamic layout issues. Exact

algorithms, heuristic/metaheuristic algorithms and

hybrid algorithms are three types of DFLP solution

techniques. Table 1 provides an overview of the

methods and algorithms used, along with the authors

of the respective papers.

Table 1 Consolidation of literature review of DFLP

Algorithm Paper Method

Exact

Algorithms

(Ballou, 1968) [17] DP

(Rosenblatt, 1986) [9] DP

(Kim and Kim, 1999) [18] Branch and Bound Algorithm

(Pérez-gosende et al. 2024) [19] Mixed integer non-linear programming

Heuristic/

Metaheuristic

Algorithms

(Rosenblatt, 1986) [9] Generating random layouts using computerized relative

allocation of facilities technique (CRAFT) or

computerized facilities design (COFAD) in each period

(Urban, 1993) [20] Steepest descent pairwise interchange

(Conway and Venkataramanan, 1994) [21] GA

(Kaku and Mazzola, 1997) [22] Tabu Search

(Balakrishnan and Cheng, 2000) [12] GA

(Baykasoğlu and Gindy, 2001) [23] Simulated annealing

(McKendall et al. 2006) [24] Simulated annealing

(Rezazadeh et al., 2009) [25] Discrete particle swarm

(Nahas et al. 2010) [26] Iterated great deluge

(Yang et al. 2011) [27] GA

(Pillai et al. 2011) [15] Simulated annealing

(Molla et al. 2020) [28] Chemical reaction optimization

Vineetha G. R and Shiyas C. R

902

Algorithm Paper Method

(Zouein and Kattan, 2021) [29] Improved construction approach using ant colony

optimization

(Palubeckis et al. 2022) [30] Variable neighbourhood search (VNS) and fast LS

(McKendall and Hakobyan 2021) [31] GA

Hybrid

Algorithms

(Balakrishnan et al. 2003) [32] GA

(McKendall and Shang, 2006) [33] Ant Systems

(Azimi and Saberi 2013) [34] Discrete Particle Swarm and Simulation

(Moslemipour 2018) [35] Multi-Population GA

(Hosseini et al.2014) [36] Imperialist Competitive Algorithms, VNS, and

Simulated Annealing

(Chen, 2013) [37] Ant Colony Algorithm

(Pradeepmon et al. 2018) [10] Estimation of distribution algorithm (EDA)

(Khajemahalle et al. 2020) [38] Hybrid nested partitions and simulated annealing

algorithm

(Hosseini et al. 2021) [39] Modified GA and Cloud-based simulated annealing

algorithm

(Guan et al, 2022) [40] Dynamic extended row facility layout problem

(DERFLP)

(Matai 2023) [41] Simulated annealing algorithm

(Sotamba et al. 2024) [42] Mixed solution methodologies

The exact solution procedures guarantee the optimal

solutions of the problem, but it may require a long time

to provide the optimal solution.

Using a long time may not be practical in many

situations, and thus researchers of the DFLP are

normally satisfied with a near-optimal solution in a

short span of time.

From the above discussion and Table 1, it is evident

that non-conventional optimization methods are

widely employed for solving DFLPs. Among the

popular metaheuristic algorithms used for solving

DFLPs, the GA has extensively studied over the years.

The GA was in the limelight when researches tried to

hybridise the metaheuristic algorithms for solving

DFLPs. But none of the studies reported has not used

the GA combined pair-wise exchange (PWX) LS or

any other similar methods for solving DFLPs. Thus, in

this work an hGA is proposed which hybridises GA

with LS for solving the DFLPs.

3.Methodology

In the GA, a population of potential solutions is

processed, with each member of the population

represented as a valid solution in the form of a

chromosome. The GA undergoes iterative processes

aimed at steering the population toward enhanced

solutions in terms of solution quality. These iterations

of the GA involve several key steps, namely selection,

reproduction, evaluation, and replacement, which are

elaborated upon in the subsequent section. The

algorithm concludes when it converges toward the

optimal solution.

Figure 1 represents the flow chart for the proposed

hGA and Figure 2 represents the corresponding

pseudo-code. In the proposed algorithm after the

normal genetic operators present in GA (namely,

selection, crossover and mutation) are over all the

individuals in the population undergoes the LS

procedure. After this LS is over the GA tests for the

TC and if it satisfies, the algorithm is terminated

reporting the obtained result.

Else, the genetic operators and LS are repeated. As a

LS is incorporated into the GA, the neighborhood of

the solutions is intensively searched for better

solutions. Thus, the proposed hGA provides better

quality solutions for the problems considered.

GA is a powerful tool for tackling complex

optimization problems like DFLPs. However, they can

sometimes get stuck in local optima, meaning they

find a good solution but not necessarily the best one.

Here's where hybridizing GA with a LS procedure can

offer advantages. LS procedures excel at refining

solutions within a specific area of the search space. By

incorporating a LS after the GA's selection and

International Journal of Advanced Technology and Engineering Exploration, Vol 11(115)

903

crossover stages, the hGA can take promising

solutions generated by the GA and further optimize

them, potentially leading to better overall solutions for

the DFLP.

Figure 1 Flow diagram of hGA

Figure 2 Pseudo code of GA

The GA's exploration capabilities help the hGA to

search a broader range of solutions. This exploration

can nudge the search out of areas with suboptimal

solutions (local optima) that the GA might get trapped

in on its own. The LS then takes over and refines these

explored solutions, potentially leading to better overall

optima. GA is good at exploring the entire solution

space, but they might not always find the best

solutions within a specific region. LS excels at

exploiting promising areas but lacks the ability to

explore widely. Hybridizing them combines these

strengths, allowing the GA to explore broadly while

the LS efficiently refines promising solutions

identified during exploration. By focusing on refining

promising solutions, the LS can potentially help the

hGA converge to a good solution faster compared to a

pure GA that might take longer to escape local optima.

Overall, hybridizing GA with the LS for DFLPs has

the potential to deliver better quality solutions, escape

local optima, and converge faster compared to using a

pure GA approach. In the proposed hGA, three critical

parameters must be carefully determined: population

size, crossover probability, and mutation probability.

Population size: Population size denotes the number of

individuals or chromosomes present within the

population at each generation. Typically, in hGAs, the

population size remains constant throughout the

evolutionary process. Keeping it fixed ensures that the

algorithm explores the search space consistently. The

choice of population size can vary depending on the

specific problem, but it should be large enough to

provide diversity and avoid premature convergence

while being manageable in terms of computational

resources.

Crossover probability determines the likelihood that

selected parents undergo crossover to produce

offspring. In hGAs, it is common to set the crossover

probability relatively high, often around 0.9. A high

crossover probability encourages the recombination of

genetic material from parents, facilitating the

exploration of potential solutions. This high value

promotes genetic diversity within the population and

helps in escaping local optima.

Mutation probability: Mutation probability signifies

the likelihood of a mutation happening in a gene

within a chromosome. Unlike crossover, mutation

introduces small, random changes to individual

chromosomes. The value of the mutation probability

is typically kept low because biological mutations are

relatively rare events. A low mutation probability

ensures that the algorithm primarily relies on

crossover for genetic diversity, using mutation as a

mechanism to introduce occasional, small-scale

changes that might lead to novel solutions.

When configuring an hGA, it's crucial to strike a

balance between population size, crossover

probability, and mutation probability. These

parameters impact the exploration and exploitation of

Initialize

Parameters

Generate Initial

Random Population

Evaluate

Fitness

Termination

Criteria

Selection

Crossover

and Mutation

Local Search
Return Best

Individual

YES

NO

hGA_pseudo_code

{

1. Initialise generation number t = 0 and choose a

Termination Criteria (TC)
2. Generate an initial random population, P(0) of

individuals

3. Evaluate the fitness of individuals in P(0)
4. While TC not satisfied do

{

t t +1;

Select parents for offspring production;
Apply crossover and mutation operations;

Do the LS on all individuals in the population;

Select a new population, P(t), of survivors;
Evaluate P(t);

}

5. Return the best individual of P(t);
}

Vineetha G. R and Shiyas C. R

904

the search space. Population size influences the

diversity of the population, while crossover and

mutation probabilities determine the degree of genetic

recombination and mutation, respectively. Finding the

right combination of these parameters depends on the

specific problem at hand and often involves

experimentation and fine-tuning to achieve optimal

performance. The hGA encompasses key operations,

including selection, crossover, mutation, offspring

insertion strategy and LS. These operations are

explained below.

3.1Selection

The selection operator, inspired by Darwinian natural

selection, is the core driving mechanism in GAs. It

mimics nature's "survival of the fittest," influencing

which individuals become parents in each generation.

Striking the right balance is crucial: too much

selection force can prematurely converge to

suboptimal solutions, while too little can hinder

progress. This operator steers the GA toward

promising areas within the search space, ultimately

shaping the evolution. Various selection schemes, like

binary tournaments, RWS, Stochastic universal

sampling, and rank selection, offer diverse strategies

to achieve this, making it adaptable to different

optimization tasks and preserving genetic diversity in

the population. The selection procedure employed in

the proposed hGA is RWS.
3.1.1Roulette wheel selection (RWS)

RWS, a widely used GA operator, mimics a roulette

wheel by assigning probabilities based on an

individual’s fitness level denoted as f(i), making it a

key component in the selection process for GAs. This

fitness value is computed as the reciprocal of the

solution's associated cost. Within the current

population, represented as P(t), each individual (i) is

assigned a selection probability, p(i), which is in direct

proportion to their fitness f(i). To streamline the

selection process, every individual in the population is

then provided with a cumulative probability range

denoted as P(i) determined by their p(i) values. The

selection process involves generating a uniform

random number, denoted as r. Subsequently, the

individual whose Ṗ(i) aligns with the generated

random value, r, is replicated into the next population,

P(t+1). The pseudocode of the implementation of

RWS can be found in Figure 3. However, it's

important to note that this method carries a potential

drawback. It is susceptible to premature convergence

toward local minima, especially when a dominant

individual with high fitness dominates the population,

potentially hindering the exploration of the entire

solution space. Careful consideration and potential

modifications are necessary to mitigate this risk and

ensure the efficacy of the GA.

Figure 3 Pseudo code of RWS

3.2Crossover

The crossover operator mimics natural reproduction,

enabling solutions to share information and create

offspring solutions. It involves taking two or more

parent solutions and using them to generate new

solutions. While the selection process duplicates good

solutions within the population, it doesn't introduce

entirely novel ones. In contrast, the crossover operator

is applied to produce improved offspring solutions.

Numerous crossover operators are available, some

tailored to specific problems, while others are more

general in their applicability. Commonly used ones

include single point crossover (SPC), order 1

crossover, cyclic crossover, position-based crossover,

and partially mapped crossover. This research

employs the SPC within the hGA. The SPC involves

selecting a random crossover point in the parent

solutions and exchanging the genetic material before

and after that point to create offspring. This process

allows for the combination of characteristics from both

parents, potentially yielding solutions that inherit

beneficial traits while promoting genetic diversity

within the population. By implementing the SPC in the

hGA, this work aims to harness its recombination

power to discover improved solutions and enhance the

algorithm's overall effectiveness.
3.2.1SPC

The SPC operator starts by selecting a single crossover

point in the parent chromosomes. This operator splits

the two parents at the selected position and the first

part of the first parent is merged with the second part

of the second parent and vice versa to obtain two new

offspring. For example, consider the parent

chromosomes P1: (1 2 3 4 5 6) and P2: (3 5 1 6 2 4),

and suppose that the third position is selected as the

crossover point. This leads to the following offsprings:

RWS_pseudo_code
{

1. Calculate the sum 𝑆 = ∑ 𝑓(𝑖)𝑛
𝑖=1

2. For each individual 1 ≤ i ≤ n do

{

Generate a random number α [0,S];

iSum = 0 ; j = 0

Do {
iSum iSum + f(j)

j j + 1

} while (iSum < α and j < n)
Select the individual j

}

}

International Journal of Advanced Technology and Engineering Exploration, Vol 11(115)

905

O1: (1 2 3 6 2 4) and O2: (3 5 1 4 5 6). Now, in O1 and

O2 one element is repeating (2 in O1 and 5 in O2) and

one element is missing (5 in O1 and 2 in O2). To make

O1 and O2 feasible solutions, insert the missing

element randomly in one of the positions of the

repeating element. This gives the offsprings O1: (1 5

3 6 2 4) and O2: (3 5 1 4 2 6).

3.3Mutation

The mutation operator introduces random alterations

to selected values within certain individuals

(chromosomes) in the population. This mutation

occurs with a low probability, mirroring its biological

counterpart. By doing so, the mutation operator

preserves genetic diversity in the population,

strengthening the GAs capability to discover nearly

optimal solutions. Common mutation techniques

include displacement mutation, swap mutation (SM),

insertion mutation, and inversion mutation. For this

study, the SM method is applied, aiming to provide the

GA with the means to explore new genetic variations

and potentially uncover improved solutions in the

optimization process.
3.3.1SM

The SM operator functions by randomly selecting two

elements from the parent string and interchanging their

positions. For instance, take the parent solution string

(1 2 3 4 5 6). If the second and fifth elements are

randomly selected, the result is the solution string (1 5

3 4 2 6). This process introduces variability in the

genetic makeup of solutions, potentially leading to the

discovery of better alternatives for optimization

problems.

3.4Offspring insertion strategy

Options encompass the substitution of parents either

with or without a specified probability, the

replacement of parents when offspring exhibit higher

fitness, enlarging the population size by merging

offspring, and additional strategies. In this study, the

strategy employed involves replacing parents in cases

where the offspring demonstrate improved fitness.

This approach ensures that the population

continuously evolves towards better solutions by

favouring the introduction of offspring that

outperform their parent solutions.
3.4.1Parent replacement strategy

Once new solutions (offspring) are generated, there

are several methods to incorporate them into the

existing population. The offspring insertion method

operates by comparing the fitness of offspring with

that of their parents. When offspring exhibit superior

fitness, they replace their parent solutions, while

inferior offspring retain their parent’s place in the

population. This approach embodies a greedy

selection strategy, retaining only the best solutions

generated through crossover and mutation.

Consequently, the population remains constant in size,

always containing the most promising solutions in

pursuit of optimization.

3.5LS

In this study, each individual within the population

undergoes a LS process known as the PWX, LS

method. PWX entails systematically exchanging two

distinct elements within the current solution to seek

improved solutions. If a better solution is identified

through this exchange, it replaces the original,

initiating a recursive PWX LS with the improved

solution as the new focus. This process iterates until a

solution is reached for which no superior solution

exists within its PWX neighbourhood. Consequently,

this study employs the recursive version of the PWX

LS, ensuring that each individual is subjected to an

iterative exploration of potential improvements, which

can lead to the discovery of highly optimized solutions

within the population.

3.6Dataset used

The test instances for DFLPs used in this research are

those provided by Balakrishnan and Cheng [12]. The

test data are grouped into six categories based on the

number of departments and the number of periods as

follows:

· 6 departments, 5 periods (6d × 5p)

· 6 departments, 10 periods (6d × 10p)

· 15 departments, 5 periods (15d × 5p)

· 15 departments, 10 periods (15d × 10p)

· 30 departments, 5 periods (30d × 5p)

· 30 departments, 10 periods (30d × 10p)

Each category consists of eight different instances and

thus there are a total of 48 test instances.

3.7Illustration

To offer a comprehensive explanation of the proposed

algorithm, the initial DFLP benchmark instance was

employed, as introduced by Balakrishnan and Cheng

[12], features a 6-department problem spanning 5

periods. Table 2 provides crucial details such as the

department distance matrix, matrix, MHCs between

departments for all five periods, and the corresponding

rearrangement costs.

Table 2 shows the Data for the 6-department × 5-

period problem from Balakrishnan and Cheng [12].

Different period has been shown from a to g.

Vineetha G. R and Shiyas C. R

906

Table 2(a) Distance matrix
To

From
1 2 3 4 5 6

1 0 1 2 1 2 3

2 1 0 1 2 1 2

3 2 1 0 3 2 1

4 1 2 3 0 1 2

5 2 1 2 1 0 1

6 3 2 1 2 1 0

Table 2(b) Flow matrix: period 1
To

From
1 2 3 4 5 6

1 0 90 689 194 165 494

2 668 0 1324 811 241 206

3 631 387 0 125 281 375

4 80 495 615 0 222 221

5 276 204 1127 490 0 676

6 109 409 1780 394 200 0

Table 2(c) Flow matrix: period 2
To

From
1 2 3 4 5 6

1 0 257 1632 330 117 285

2 159 0 1309 297 803 404

3 98 82 0 271 222 383

4 110 404 1174 0 750 386

5 73 507 1679 190 0 107

6 152 487 355 646 315 0

Table 2(d) Flow matrix: period 3
To

From
1 2 3 4 5 6

1 0 1112 505 422 414 132

2 627 0 560 99 227 86

3 373 2007 0 235 384 205

4 482 1638 262 0 233 129

5 223 1196 520 55 0 75

6 200 782 271 292 235 0

Table 2(e) Flow matrix: period 4
To

From
1 2 3 4 5 6

1 0 1348 490 447 186 169

2 625 0 74 307 777 326

3 114 1645 0 288 975 68

4 156 578 447 0 554 212

5 353 732 118 373 0 283

6 328 1071 387 352 199 0

Table 2(f) Flow matrix: period 5
To

From
1 2 3 4 5 6

1 0 159 1103 218 297 95

2 631 0 1618 95 253 109

3 552 213 0 432 397 141

4 418 122 797 0 108 495

5 115 154 1610 425 0 158

6 167 214 2092 471 323 0

Table 2(g) Rearrangement costs
Department 1 2 3 4 5 6

Rearrangemen

t Cost

89

8

91

1

62

7

53

8

73

8

97

7

3.7.1Working of the proposed algorithm

1. Generate population ∅ =

{

5 3 6 1 2 4 5 3 4 1 2 6 5 3 4 1 2 6 5 3 4 1 2 6 5 3 4 1 2 6
2 3 1 4 5 6 2 3 1 4 5 6 2 3 6 1 5 4 2 3 6 1 5 4 2 3 6 1 5 4

⋮
2 3 1 4 5 6 1 3 4 2 5 6 1 2 4 5 3 6 1 2 4 5 3 6 1 2 4 5 3 6

}

of size d × p / 2 (= 15 for this problem) solutions by

random permutations. Each solution consists of 30

numbers out of which, the first six numbers

represent the order of arrangement of six facilities

during the first period and the next six numbers

represent the order of arrangement of six facilities

during the second period and so on.
2. Determine the objective function value (the cost

associated with the solution) by summing the

transportation cost and rearrangement cost for each

of the five periods.

∅𝑇𝐶 = {

108053
109847

⋮
108296

}

And evaluate the fitness of each solution as 1/objective

function value (cost associated with the solution).

3. Run the selection, crossover and mutation

operations as described in the methodology section.

4. Execute the PWX LS on each of the solutions

within the population.

𝛷 = {

4 2 5 6 3 1 4 2 5 6 3 1 4 2 5 6 3 1 4 2 5 6 3 1 4 2 5 6 3 1
5 3 1 4 2 6 5 3 1 4 2 6 5 3 6 4 2 1 5 3 6 4 2 1 5 3 6 4 2 1

⋮
2 3 1 4 5 6 1 3 4 2 5 6 1 2 4 5 3 6 1 2 4 5 3 6 1 2 4 5 3 6

}

5. Determine the objective function value by adding

the transportation cost and rearrangement cost for

each of the five periods.

𝛷𝑇𝐶 = {

108024
108111

⋮
108053

}

6. Check for the termination criterion (TC), i.e.,

whether the current generation number is < the

maximum number of generations (= 10 × d × p). If

TC are met, end the algorithm and report the results,

else calculate the fitness value for the objective

function values and repeat steps 3 to 6.

International Journal of Advanced Technology and Engineering Exploration, Vol 11(115)

907

3.8Experimental setup and parameters

The various parameters and operators employed in the

proposed hGA are listed in Table 3. These parameters

are obtained from the works of Pradeepmon et al. [43].

The proposed hGA is coded in Matlab, run on the

Pentium 4, 2.60 GHz, 2 GB RAM processor and each

of the 48 test instances are solved. The 48 test

instances available fall into six different problem sizes

with each problem size having eight different test

instances. The six problem sizes of the test instances

are 6d × 5p, 6d × 10p, 15d × 5p, 15d × 10p, 30d × 5p

and 30d × 10p, where d in the problem size represents

the number of departments and p represents the

number of periods. The test instances are obtained

from Balakrishnan and Cheng [12].

Table 3 Selected operations and parameters for hGA

S. No. Parameter / Operator Value

1 Population Size d × p / 2

2 Mutation Probability 0.04

3 Crossover Probability 0.9

4 Termination Criterion Number of Generations = 10 × d × p

5 Selection Procedure RWS

6 Crossover Operator SPC

7 Mutation Operator SM

8 Offspring Insertion Strategy Parent replacement strategy

9 LS Method PWX LS

10 Fitness value The inverse of the cost associated with the solution
d represents the number of departments and p represents the number of periods

For each test instance, ten solution runs are performed,

and the resulting minimum and average costs are

documented, along with a comparison to the best-

known solutions found in the literature.

4.Results
Figure 4 represents a sample convergence graph of the

algorithm for the 30d × 5p sized problems considered

in this work. The graphs depict the average cost

associated with the solutions over generations for the

problem size 30d × 5p. Only the first instance is

considered as a sample for plotting the convergence

graph. The results of the experiments are presented in

Table 4, which includes the minimum and average

values achieved over ten algorithm trials for each test

instance along with the reported average run time of

the algorithm. Table 5 displays a comprehensive

comparison between the best solutions achieved and

the best-known solutions from the literature. This

comparison encompasses the results of the proposed

algorithm and those published in various references,

including Conway and Venkataraman (CVGA) [21],

Mckendall et al. (modified simulated annealing (Mod

SA))[24], McKendall and Shang (hybrid ant system

(HAS))[33], Sahin and Turkbey (tabu list simulated

annealing (TABUSA))[44], Nahas et al. (iterated great

deluge (IGD))[26], Pillai et al. (simulated annealing

(SA)) [15], Mckendall and Liu (heuristic tabu

(HTABU))[45], Hosseini-nasab and Emami (hybrid

particle swarm optimization (HPSO))[46], Turanoglu

and Akkaya (simulated annealing bacterial foraging

optimization (SABFO))[47], Zouein and Kattan

(improved ant colony optimization (ASCOII))[29].

Notably all of these solution methodologies except for

Pillai et al., employ adaptive approaches, while Pillai

et al. utilizes a robust method for achieving near-

optimal solutions. Detailed results of this comparison

can be found in Tables 5(a) to 5(f).

Figure 5 represents the percentage deviation of the

solutions obtained by hGA from the best-known

solutions available in the literature. Even though the

solutions obtained for higher-sized problems are not as

good as those provided in the literature, the simple

hybridisation procedure provides near-optimal

solutions. Table 6 provides the comparison of

solutions obtained using the hGA and SGA. From the

table, it is evident that the results obtained using hGA

are far better than those obtained using SGA. Figure 6

illustrates the average percentage deviation of

solutions obtained with hGA in comparison to those

obtained with SGA. In Figure 6, the horizontal axis

labels 1 to 8 represent the eight instances and 9

represents the average value over the eight instances.

Vineetha G. R and Shiyas C. R

908

Figure 4 Average cost associated with the solutions over generations for the problem size 30d × 5p instance 1

Table 4 Minimum and average values and run time in seconds for the 48 test instances

Instance Description
Problem Size

6d × 5p 6d × 10p 15d × 5p 15d × 10p 30d × 5p 30d × 10p

1

Minimum 106419 215143 483473 996130 588103 1197060

Average 107624.6 217141.3 487718.1 997634.4 590614.9 1198805.1

Run Time (s) 0.1 1.6 6.9 108.9 217.8 3616.9

2

Minimum 104834 212402 490757 990136 582605 1193757

Average 105183.8 213861.4 491781.8 994215 585180.8 1198392.9

Run Time (s) 0.1 1.5 7.0 110.9 219.7 3674.3

3

Minimum 104320 208605 496085 997860 586718 1185609

Average 104745 209564.1 497083.3 1001937.3 587616.3 1189150

Run Time (s) 0.1 1.5 7.0 104.2 223.3 3804.1

4

Minimum 106399 213858 489459 988390 577715 1171244

Average 106631.4 214916.2 491461.1 990260.4 578618.3 1175855.7

Run Time (s) 0.1 1.4 7.0 104.3 225.7 3745.8

5

Minimum 105628 211242 491444 991279 567854 1157242

Average 106202.2 212827.2 493798.9 994503.1 571010.1 1160000.9

Run Time (s) 0.1 1.5 7.0 104.9 221.5 3737.0

6

Minimum 103985 210707 492129 985221 577964 1173757

Average 104748.9 211678.4 493306.2 987158.4 579492.1 1176024.5

Run Time (s) 0.1 1.5 6.8 101.2 219.9 3665.9

7

Minimum 106439 215045 491214 992281 580421 1179738

Average 107275.8 217440.3 492598.9 995177.3 582873.7 1184161.1

Run Time (s) 0.1 1.5 6.8 101.2 225.4 3566.6

8

Minimum 103771 213900 496601 995096 586862 1192914

Average 105112.6 216418.2 498004.6 997918.9 587649.7 1193989.9

Run Time (s) 0.1 1.4 6.8 101.5 221.9 3628.8

591000.00

592000.00

593000.00

594000.00

595000.00

596000.00

597000.00

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0
1

1
0
5

1
0
9

1
1
3

1
1
7

1
2
1

1
2
5

1
2
9

1
3
3

1
3
7

1
4
1

1
4
5

1
4
9

30d × 5p instance - 1

International Journal of Advanced Technology and Engineering Exploration, Vol 11(115)

909

Table 5(a) Comparison of results obtained using hGA with other results available in the literature for 6d × 5p
Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8

6

 D
ep

a
rt

m
en

t
a
n

d
 5

 P
er

io
d

CVGA [21] 1,08,976 1,05,170 1,04,520 1,06,719 1,05,628 1,05,606 1,06,439 1,04,485

A
v

er
a

g
e

%
 D

ev
ia

ti
o
n

Mod SA [24] 1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771

HAS [33] 1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771

TABUSA [44] 1,06,419 1,04,834 1,04,320 1,06,399 1,05,737 1,03,985 1,06,439 1,03,771

IGD [26] 1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771

SA [15] 1,06,419 1,05,731 1,07,650 1,08,260 1,08,188 1,07,765 1,08,114 1,07,248

HTABU [45] 1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771

HPSO [46] 1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771

SABFO [47] 1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771

ACOII [29] 1,06,419 1,03,507 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771

Best Cost 1,06,419 1,03,507 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771

hGA 1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771

% Deviation 0.00 1.28 0.00 0.00 0.00 0.00 0.00 0.00 0.16

Table 5(b) Comparison of results obtained using hGA with other results available in the literature for 6d × 10p

 Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8

6
 D

ep
ar

tm
en

t
an

d
 1

0
 P

er
io

d

CVGA [21] 2,18,407 2,15,623 2,11,028 2,17,493 2,15,363 2,15,564 2,20,529 2,16,291

A
v

er
a

g
e

%
 D

ev
ia

ti
o
n

Mod SA [24] 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588

HAS [33] 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588

TABUSA [44] 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588

IGD [26] 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588

SA [15] 2,20,776 2,17,412 2,19,024 2,17,350 2,17,142 2,17,397 2,19,788 2,20,144

HTABU [45] 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588

HPSO [46] 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588

SABFO [47] 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588

ACOII [29] 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588

Best Cost 2,14,313 2,12,134 2,07,987 2,12,530 2,10,906 2,09,932 2,14,252 2,12,588

hGA 2,15,143 2,12,402 2,08,605 2,13,858 2,11,242 2,10,707 2,15,045 2,13,900

% Deviation 0.39 0.13 0.30 0.62 0.16 0.37 0.37 0.62 0.37

Table 5(c) Comparison of results obtained using hGA with other results available in the literature for 15d × 5p

 Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8

1
5

 D
ep

ar
tm

en
t

an
d

 5
 P

er
io

d

CVGA [21] 5,04,759 5,14,718 5,16,063 5,08,532 5,15,599 5,09,384 5,12,508 5,14,839

A
v

er
a

g
e

%
 D

ev
ia

ti
o
n

Mod SA [24] 4,80,453 4,84,761 4,88,748 4,84,405 4,87,882 4,87,147 4,86,779 4,90,812

HAS [33] 4,80,453 4,84,761 4,88,748 4,84,446 4,87,722 4,86,685 4,86,853 4,91,016

TABUSA [44] 4,80,453 4,84,761 4,89,058 4,84,446 4,87,822 4,86,493 4,86,268 4,90,551

IGD [26] 4,80,453 4,84,761 4,89,058 4,84,446 4,87,822 4,86,493 4,86,268 4,90,812

SA [15] 5,06,847 5,00,284 5,08,011 5,03,699 5,02,622 4,99,891 5,02,919 5,07,970

HTABU [45] 4,80,453 4,84,761 4,88,748 4,84,446 4,87,911 4,86,493 4,86,592 4,90,812

HPSO [46] 4,80,453 4,78,310 4,86,987 4,83,813 4,84,968 4,86,493 4,85,384 4,89,150

SABFO [47] 4,80,453 4,84,853 4,89,981 4,86,006 4,88,556 4,88,196 4,87,476 4,91,789

ACOII [29] 4,80,453 4,84,761 4,88,748 4,84,446 4,87,753 4,86,493 4,86,732 4,90,551

Best Cost 4,80,453 4,78,310 4,86,987 4,83,813 4,84,968 4,86,493 4,85,384 4,89,150

hGA 4,83,473 4,90,757 4,96,085 4,89,459 4,91,444 4,92,129 4,91,214 4,96,601

% Deviation 0.63 2.60 1.87 1.17 1.34 1.16 1.20 1.52 1.44

Table 5(d) Comparison of results obtained using hGA with other results available in the literature for 15d × 10p

 Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8

1
5

 D
ep

ar
tm

en
t

an
d

 1
0

 P
er

io
d

CVGA [21]
10,55,53

6

10,61,94

0

10,73,60

3

10,60,03

4

10,64,69

2

10,66,37

0

10,66,61

7

10,68,21

6

A
v

er
a

g
e

%

D
ev

ia
ti

o
n

Mod SA

[24]
9,79,468 9,78,065 9,82,396 9,72,797 9,77,188 9,67,617 9,79,114 9,83,672

HAS [33] 9,80,351 9,78,271 9,78,027 9,74,694 9,79,196 9,71,548 9,80,752 9,85,707

Vineetha G. R and Shiyas C. R

910

 Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8

TABUSA

[44]
9,78,848 9,77,338 9,81,172 9,71,720 9,76,781 9,68,362 9,78,660 9,82,880

IGD [26] 9,78,848 9,78,304 9,81,172 9,71,759 9,77,234 9,68,067 9,78,930 9,82,888

SA [15]
10,59,10

0

10,22,44

7

10,68,40

2

10,54,99

7

10,51,39

5

10,57,54

3

10,37,06

6

10,40,45

0

HTABU

[45]
9,81,412 9,78,004 9,83,109 9,71,720 9,77,100 9,71,287 9,78,576 9,83,341

HPSO [46] 9,78,588 9,76,208 9,78,027 9,71,759 9,76,119 9,68,539 9,78,519 9,82,964

SABFO

[47]
9,82,087 9,79,095 9,82,914 9,74,144 9,79,376 9,70,247 9,83,527 9,84,664

ACOII [29] 9,79,081 9,77,338 9,81,172 9,71,720 9,76,310 9,67,617 9,78,576 9,84,025

Best Cost 9,78,588 9,76,208 9,78,027 9,71,720 9,76,119 9,67,617 9,78,519 9,82,880

hGA 9,96,130 9,90,136 9,97,860 9,88,390 9,91,279 9,85,221 9,92,281 9,95,096

%

Deviation
1.79 1.43 2.03 1.72 1.55 1.82 1.41 1.24

1.6

2

Table 5(e) Comparison of results obtained using hGA with other results available in the literature for 30d × 5p

 Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8

3
0

 D
ep

ar
tm

en
t

an
d

 5
 P

er
io

d

CVGA [21] 6,32,737 6,47,585 6,42,295 6,34,626 6,39,693 6,37,620 6,40,482 6,35,776

A
v

er
a

g
e

%
 D

ev
ia

ti
o
n

Mod SA [24] 5,76,039 5,68,095 5,73,739 5,66,248 5,58,460 5,66,077 5,67,131 5,73,755

HAS [33] 5,76,886 5,70,349 5,76,053 5,66,777 5,58,353 5,66,762 5,67,131 5,75,280

TABUSA [44] 5,74,624 5,68,256 5,72,865 5,66,231 5,57,356 5,66,599 5,67,628 5,73,487

IGD [26] 5,75,386 5,69,045 5,72,104 5,64,398 5,55,555 5,64,124 5,67,775 5,72,802

SA [15] 5,79,704 5,76,350 5,86,831 5,84,318 5,70,492 5,72,782 5,71,703 5,96,835

HTABU [45] 5,74,657 5,67,481 5,71,462 5,64,868 5,55,628 5,65,100 5,66,993 5,73,023

HPSO [46] 5,77,248 5,69,175 5,72,105 5,66,124 5,55,551 5,64,804 5,67,131 5,73,755

SABFO [47] 5,78,415 5,70,630 5,77,390 5,68,289 5,58,345 5,72,536 5,69,993 5,77,873

ACOII [29] 5,73,722 5,66,776 5,65,411 5,64,171 5,54,281 5,64,110 5,64,682 5,72,207

Best Cost 5,73,722 5,66,776 5,65,411 5,64,171 5,54,281 5,64,110 5,64,682 5,72,207

hGA 5,88,103 5,82,605 5,86,718 5,77,715 5,67,854 5,77,964 5,80,421 5,86,862

% Deviation 2.51 2.79 3.77 2.40 2.45 2.46 2.79 2.56 2.72

Table 5(f) Comparison of results obtained using hGA with other results available in the literature for 30d × 10p

 Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8

3
0

 D
ep

ar
tm

en
t

an
d

 1
0
 P

er
io

d

CVGA [21]
13,62,51

3

13,79,64

0

13,65,02

4

13,67,13

0

13,56,86

0

13,72,51

3

13,82,79

9

13,83,61

0

A
v

er
a

g
e

%
 D

ev
ia

ti
o
n

Mod SA [24]
11,63,22

2

11,61,52

1

11,56,91

8

11,45,91

8

11,26,43

2

11,45,14

6

11,40,74

4

11,61,43

7

HAS [33]
11,66,16

4

11,68,87

8

11,66,36

6

11,48,20

2

11,28,85

5

11,41,34

4

11,40,77

3

11,66,15

7

TABUSA

[44]

11,61,75

1

11,60,65

6

11,55,40

6

11,44,82

1

11,25,96

8

11,43,48

0

11,45,83

0

11,64,32

2

IGD [26]
11,57,88

7

11,58,24

3

11,55,31

9

11,40,39

5

11,23,38

5

11,40,72

3

11,45,09

8

11,62,70

0

SA [15]
11,72,69

1

11,82,28

6

11,88,62

0

11,98,48

7

11,98,67

4

12,02,03

3

12,10,57

3

12,09,08

8

HTABU [45]
11,59,58

9

11,57,94

2

11,54,79

9

11,43,11

0

11,23,44

6

11,41,14

4

11,45,95

1

11,60,48

4

HPSO [46]
11,60,38

8

11,58,24

3

11,56,19

8

11,49,75

3

11,23,67

3

11,47,93

5

11,42,03

1

11,60,65

8

SABFO [47]
11,68,45

3

11,70,04

2

11,60,20

4

11,49,94

4

11,32,13

6

11,44,67

7

11,60,83

0

11,72,85

7

ACOII [29]
11,57,70

3

11,56,90

0

11,52,54

6

11,41,14

9

11,19,49

6

11,40,88

3

11,44,72

7

11,06,65

1

International Journal of Advanced Technology and Engineering Exploration, Vol 11(115)

911

 Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8

Best Cost
11,57,70

3

11,56,90

0

11,52,54

6

11,40,39

5

11,19,49

6

11,40,72

3

11,40,74

4

11,06,65

1

hGA
11,97,06

0

11,93,75

7

11,85,60

9

11,71,24

4

11,57,24

2

11,73,75

7

11,79,73

8

11,92,91

4

% Deviation 3.40 3.19 2.87 2.71 3.37 2.90 3.42 7.79
3.7

1

Table 6 Comparison of results obtained using hGA with that using simple genetic algorithm (SGA)

 Algorithm Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8

6
d

 ×
 5

p

SGA 1,16,485 1,13,061 1,11,989 1,18,608 1,14,450 1,14,642 1,16,045 1,14,686 Averag

e hGA 1,06,419 1,04,834 1,04,320 1,06,399 1,05,628 1,03,985 1,06,439 1,03,771

%

Deviation
-8.64 -7.28 -6.85 -10.29 -7.71 -9.30 -8.28 -9.52 -8.48

6
d

 ×
 1

0
p

 SGA 2,42,166 2,36,601 2,38,773 2,45,369 2,42,769 2,40,554 2,44,123 2,43,187 Averag

e hGA 2,15,143 2,12,402 2,08,605 2,13,858 2,11,242 2,10,707 2,15,045 2,13,900

%

Deviation
-11.16 -10.23 -12.63 -12.84 -12.99 -12.41 -11.91 -12.04 -12.03

1
5

d
 ×

 5
p

SGA 5,52,377 5,53,215 5,57,421 5,53,667 5,52,013 5,52,713 5,53,560 5,58,456 Averag

e hGA 4,83,473 4,90,757 4,96,085 4,89,459 4,91,444 4,92,129 4,91,214 4,96,601

%

Deviation
-12.47 -11.29 -11.00 -11.60 -10.97 -10.96 -11.26 -11.08 -11.33

1
5

d
 ×

 1
0

p
 SGA

11,42,20

6

11,38,46

5

11,47,04

8

11,39,57

8

11,44,12

4

11,31,68

1

11,30,85

6

11,32,65

6
Averag

e
hGA 9,96,130 9,90,136 9,97,860 9,88,390 9,91,279 9,85,221 9,92,281 9,95,096

%

Deviation
-12.79 -13.03 -13.01 -13.27 -13.36 -12.94 -12.25 -12.14 -12.85

3
0

d
 ×

 5
p

 SGA 6,80,790 6,83,892 6,78,446 6,76,468 6,73,117 6,79,331 6,86,388 6,85,919 Averag

e hGA 5,88,103 5,82,605 5,86,718 5,77,715 5,67,854 5,77,964 5,80,421 5,86,862

%

Deviation
-13.61 -14.81 -13.52 -14.60 -15.64 -14.92 -15.44 -14.44 -14.62

3
0

d
 ×

 1
0

p

SGA
14,06,55

7

14,09,61

7

13,99,76

3

14,03,82

6

13,98,03

5

14,02,85

4

14,11,01

0

14,01,96

7 Averag

e
hGA

11,97,06

0

11,93,75

7

11,85,60

9

11,71,24

4

11,57,24

2

11,73,75

7

11,79,73

8

11,92,91

4

%

Deviation
-14.89 -15.31 -15.30 -16.57 -17.22 -16.33 -16.39 -14.91 -15.87

Figure 5 Percentage deviation between the solutions obtained through hGA and the best-known solutions is being

assessed

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

1 2 3 4 5 6 7 8 9

6d × 5p 6d × 10p 15d × 5p 15d × 10p 30d × 5p 30d × 10p

Vineetha G. R and Shiyas C. R

912

Figure 6 Percentage deviation of solutions obtained using hGA over that using SGA

5.Discussions

The experimental results encompass an analysis of

convergence behaviour, solution quality, and

comparative performance with existing

methodologies. Firstly, Figure 4 illustrates the

convergence trajectory of the algorithm for a

representative problem size (30d × 5p). The graph

showcases the average cost associated with solutions

across generations, providing insights into the

algorithm's convergence dynamics which displays the

algorithm's convergence behaviour and its efficiency

in finding optimal or near-optimal solutions. Moving

to Table 4, which summarizes the minimum and

average solution values obtained over ten algorithm

trials for each test instance along with the average

runtime. This table offers a comprehensive overview

of the algorithm's performance across different

problem instances, shedding light on its consistency

and computational efficiency. Table 5 presents a

comparative analysis between the solutions achieved

by the proposed algorithm and the best-known

solutions reported in the literature. This comparison,

spanning various methodologies, offers valuable

insights into the efficacy of the proposed approach.

Notably, while the solutions obtained for higher-sized

problems may not match those in the literature, the

hGA demonstrates its capability in providing near-

optimal solutions, particularly through its

hybridization strategy. Figure 5 further elucidates the

percentage deviation of solutions obtained by the hGA

from the best-known solutions in the literature.

Despite discrepancies, especially for larger problem

sizes, the hGA's simple hybridization technique

proves effective in yielding solutions close to

optimality. Table 6 extends the discussion by

comparing the solutions obtained using the hGA with

those obtained using a SGA. The results showcase the

superiority of the hGA over SGA, emphasizing the

effectiveness of the hybrid approach in enhancing

solution quality. Moreover, Figure 6 offers a visual

representation of the average percentage deviation of

solutions obtained by the hGA compared to SGA

across different instances. This graphical depiction

underscores the consistent performance improvement

achieved by the hGA over its standard counterpart.

This study utilized parameters from another published

work by Pradeepmon et al. [43], which were initially

derived for optimizing the GA used for QAPs.

However, it would have been more appropriate if these

parameters had been specifically tailored for

optimizing the GA for DFLPs. Additionally, a

limitation of the current research is that the proposed

algorithm was only applied to DFLPs, and its

effectiveness in solving other types of combinatorial

optimization problems has not been evaluated. A

complete list of abbreviations is listed in Appendix I.

6.Conclusion and future work
In this work, hGA is proposed for solving DFLPs. The

hGA incorporates basic genetic operations along with

a LS procedure. The algorithm is applied to 48 test

instances, with the minimum and average values

obtained over ten runs reported for each instance.

Additionally, the average time taken to achieve these

results is documented. The results demonstrate that the

hGA consistently delivers solutions that are within

four percent of the best-known solutions for all test

instances, with the average percentage deviation

ranging from 0% for smaller instances to 3.71% for

-18.00

-16.00

-14.00

-12.00

-10.00

-8.00

-6.00

-4.00

1 2 3 4 5 6 7 8 9

6d × 5p 6d × 10p 15d × 5p 15d × 10p 30d × 5p 30d × 10p

International Journal of Advanced Technology and Engineering Exploration, Vol 11(115)

913

larger ones. Although the average runtime for these

instances is mentioned, it is not compared with other

published times due to significant variations in

machine configurations used in different studies,

rendering such comparisons irrelevant. While the

results for larger test instances show some deviation

from the best-known solutions, the hGA proves

effective at solving DFLPs to near-optimal levels

efficiently.

Future works may focus on:

· Further hybridizing the SGA with other algorithms

or incorporating advanced search techniques like

VNS into the GA framework.

· Integrating machine learning techniques such as

clustering algorithms to select candidates for LS,

which could improve runtime.

· Applying the proposed hGA to solve unequal area

DFLPs, opening up new research possibilities.

Acknowledgment
The authors would like to thank Professors Jaydeep

Balakrishnan and Chun Hung Cheng for providing the

datasets.

Conflicts of interest
The authors have no conflicts of interest to declare.

Data availability
The DFLP dataset used in this study is considered from

Balakrishnan and Cheng [12] and is publicly accessible. It

can be found at: https://prism.ucalgary.ca/items/3cc97aa9-

fa0b-4cf6-b6de-8bb3bb998498/full

Authors contribution statement
Vineetha G. R: Data Collection, Investigation,

Conceptualization, Data curation, Writing – original draft,

review and editing, Analysis and interpretation of results and

manuscript preparation. Shiyas C. R: Supervision,

Guidance, Investigation, Conceptualization, Analysis and

correction of paper

References

[1] Aziz FA. Manufacturing system. BoD–Books on

Demand, 2012.

[2] Tompkins JA, White JA, Bozer YA, Tanchoco JM.

Facilities planning. John Wiley & Sons; 2010.

[3] Abdollahi P, Aslam M, Yazdi AA. Choosing the best

facility layout using the combinatorial method of gray

relation analysis and nonlinear programming. Journal

of Statistics and Management Systems. 2019;

22(6):1143-61.

[4] Montoya-torres JR, Aponte A, Rosas P, Caballero-

villalobos JP. Applying GRASP meta-heuristic to solve

the single-item two-echelon uncapacitated facility

location problem. International Journal of Applied

Decision Sciences. 2010; 3(4):297-310.

[5] Balakrishnan J, Cheng CH. Dynamic layout algorithms:

a state-of-the-art survey. Omega. 1998; 26(4):507-21.

[6] Koopmans TC, Beckmann M. Assignment problems

and the location of economic activities. Econometrica:

Journal of the Econometric Society. 1957:53-76.

[7] Sahni S, Gonzalez T. P-complete approximation

problems. Journal of the ACM. 1976; 23(3):555-65.

[8] Loiola EM, De ANM, Boaventura-netto PO, Hahn P,

Querido T. A survey for the quadratic assignment

problem. European journal of Operational Research.

2007; 176(2):657-90.

[9] Rosenblatt MJ. The dynamics of plant layout.

Management Science. 1986; 32(1):76-86.

[10] Pradeepmon TG, Panicker VV, Sridharan R. A

heuristic algorithm enhanced with probability-based

incremental learning and local search for dynamic

facility layout problems. International Journal of

Applied Decision Sciences. 2018; 11(4):352-89.

[11] Balakrishnan J. Solutions for the constrained dynamic

plant layout problem. Indiana University; 1991.

[12] Balakrishnan J, Cheng CH. Genetic search and the

dynamic layout problem. Computers & Operations

Research. 2000; 27(6):587-93.

[13] Braglia M, Zanoni S, Zavanella L. Robust versus stable

layout design in stochastic environments. Production

Planning & Control. 2005; 16(1):71-80.

[14] Balakrishnan J, Cheng CH. The dynamic plant layout

problem: incorporating rolling horizons and forecast

uncertainty. Omega. 2009; 37(1):165-77.

[15] Pillai VM, Hunagund IB, Krishnan KK. Design of

robust layout for dynamic plant layout problems.

Computers & Industrial Engineering. 2011; 61(3):813-

23.

[16] Chen GY. Multi-objective evaluation of dynamic

facility layout using ant colony optimization. The

University of Texas at Arlington; 2007.

[17] Ballou RH. Dynamic warehouse location analysis.

Journal of Marketing Research. 1968; 5(3):271-6.

[18] Kim JG, Kim YD. A branch and bound algorithm for

locating input and output points of departments on the

block layout. Journal of the Operational Research

Society. 1999; 50(5):517-25.

[19] Pérez-gosende P, Mula J, Díaz-madroñero M. A

bottom-up multi-objective optimisation approach to

dynamic facility layout planning. International Journal

of Production Research. 2024 ;62(3):626-43.

[20] Urban TL. A heuristic for the dynamic facility layout

problem. IIE Transactions. 1993; 25(4):57-63.

[21] Conway DG, Venkataramanan MA. Genetic search and

the dynamic facility layout problem. Computers &

Operations Research. 1994; 21(8):955-60.

[22] Kaku BK, Mazzola JB. A tabu-search heuristic for the

dynamic plant layout problem. INFORMS Journal on

Computing. 1997; 9(4):374-84.

[23] Baykasoğlu A, Gindy NN. A simulated annealing

algorithm for dynamic layout problem. Computers &

Operations Research. 2001; 28(14):1403-26.

Vineetha G. R and Shiyas C. R

914

[24] Mckendall JAR, Shang J, Kuppusamy S. Simulated

annealing heuristics for the dynamic facility layout

problem. Computers & Operations Research. 2006;

33(8):2431-44.

[25] Rezazadeh H, Ghazanfari M, Saidi-mehrabad M, Jafar

SS. An extended discrete particle swarm optimization

algorithm for the dynamic facility layout problem.

Journal of Zhejiang University-Science A. 2009;

10:520-9.

[26] Nahas N, Kadi DA, El FMN. Iterated great deluge for

the dynamic facility layout problem. CIRRELT; 2010.

[27] Yang CL, Chuang SP, Hsu TS. A genetic algorithm for

dynamic facility planning in job shop manufacturing.

The International Journal of Advanced Manufacturing

Technology. 2011; 52:303-9.

[28] Molla MR, Naznin M, Islam MR. Dynamic facility

layout problem using chemical reaction optimization.

In 4th international conference on computer,

communication and signal processing 2020 (pp. 1-5).

IEEE.

[29] Zouein PP, Kattan S. An improved construction

approach using ant colony optimization for solving the

dynamic facility layout problem. Journal of the

Operational Research Society. 2022; 73(7):1517-31.

[30] Palubeckis G, Ostreika A, Platužienė J. A variable

neighborhood search approach for the dynamic single

row facility layout problem. Mathematics. 2022;

10(13):1-27.

[31] Mckendall A, Hakobyan A. An application of an

unequal-area facilities layout problem with fixed-shape

facilities. Algorithms. 2021; 14(11):1-14.

[32] Balakrishnan J, Cheng CH, Conway DG, Lau CM. A

hybrid genetic algorithm for the dynamic plant layout

problem. International Journal of Production

Economics. 2003; 86(2):107-20.

[33] Mckendall JAR, Shang J. Hybrid ant systems for the

dynamic facility layout problem. Computers &

Operations Research. 2006; 33(3):790-803.

[34] Azimi P, Saberi EJ. An efficient hybrid algorithm for

dynamic facility layout problem using simulation

technique and PSO. Economic Computation &

Economic Cybernetics Studies & Research. 2013;

47(4).

[35] Moslemipour G. A hybrid CS-SA intelligent approach

to solve uncertain dynamic facility layout problems

considering dependency of demands. Journal of

Industrial Engineering International. 2018; 14(2):429-

42.

[36] Hosseini S, Khaled AA, Vadlamani S. Hybrid

imperialist competitive algorithm, variable

neighborhood search, and simulated annealing for

dynamic facility layout problem. Neural Computing

and Applications. 2014; 25:1871-85.

[37] Chen GY. A new data structure of solution

representation in hybrid ant colony optimization for

large dynamic facility layout problems. International

Journal of Production Economics. 2013; 142(2):362-

71.

[38] Khajemahalle L, Emami S, Keshteli RN. A hybrid

nested partitions and simulated annealing algorithm for

dynamic facility layout problem: a robust optimization

approach. INFOR: Information Systems and

Operational Research. 2021; 59(1):74-101.

[39] Hosseini SS, Azimi P, Sharifi M, Zandieh M. A new

soft computing algorithm based on cloud theory for

dynamic facility layout problem. RAIRO-Operations

Research. 2021; 55:S2433-53.

[40] Guan C, Zhang Z, Zhu L, Liu S. Mathematical

formulation and a hybrid evolution algorithm for

solving an extended row facility layout problem of a

dynamic manufacturing system. Robotics and

Computer-Integrated Manufacturing. 2022; 78:102379.

[41] Matai R. A unique discrete formulation for unequal

area dynamic facility layout problem. In international

conference on industrial engineering and engineering

management 2023 (pp. 622-6). IEEE.

[42] Sotamba LM, Peña M, Siguenza-Guzman L. Driver

analysis to solve dynamic facility layout problems: a

literature review. In international conference on

flexible automation and intelligent manufacturing 2024

(pp. 242-9). Springer, Cham.

[43] Pradeepmon TG, Panicker VV, Sridharan R. Genetic

algorithm for quadratic assignment problems:

application of Taguchi method for optimisation.

International Journal of Operational Research. 2020;

38(2):193-220.

[44] Şahin R, Türkbey O. A new hybrid tabu-simulated

annealing heuristic for the dynamic facility layout

problem. International Journal of Production Research.

2009; 47(24):6855-73.

[45] Mckendall JAR, Liu WH. New tabu search heuristics

for the dynamic facility layout problem. International

Journal of Production Research. 2012; 50(3):867-78.

[46] Hosseini-nasab H, Emami L. A hybrid particle swarm

optimisation for dynamic facility layout problem.

International Journal of Production Research. 2013;

51(14):4325-35.

[47] Turanoğlu B, Akkaya G. A new hybrid heuristic

algorithm based on bacterial foraging optimization for

the dynamic facility layout problem. Expert Systems

with Applications. 2018; 98:93-104.

Vineetha G. R born on May 5, 1986, in

Kollam, India, is an accomplished

researcher currently pursuing a PhD in

the realm of Optimization with a focus

on Dynamic Facility Layout Problems,

employing Genetic Algorithms as a

principal methodology. Armed with a

Master's degree in Technology

(M.Tech), Vineetha has demonstrated exceptional

dedication to pushing the boundaries of knowledge in this

complex field. With an impressive track record of over ten

publications in esteemed journals and conference

proceedings, she has established herself as a respected

authority in the domain of optimization and is committed to

unravelling innovative solutions to practical problems

International Journal of Advanced Technology and Engineering Exploration, Vol 11(115)

915

through her pioneering work with genetic algorithms.

Vineetha's academic journey is marked by her unwavering

commitment to the advancement of optimization research,

solidifying her position as a distinguished scholar with a

promising future in pushing the frontiers of knowledge in

dynamic facility management.

Email: grvineethavysakh@gmail.com

Dr. Shiyas C. R, is an Associate

Professor at Cochin University of

Science and Technology (CUSAT),

brings extensive expertise to the field of

Industrial Engineering. Born on April

30, 1976, Shiyas holds a Ph.D. in

Industrial Engineering and has made

invaluable contributions to academia

during a two-decade-long tenure at CUSAT. With a strong

academic foundation and an impressive publication record

in SCI-indexed and Scopus-indexed journals. Dr. Shiyas is a

prominent figure in the research community, exemplifying

dedication and excellence in advancing knowledge within

the discipline of Mechanical Engineering. His wealth of

experience and scholarly accomplishments indicate his

significant role in shaping the academic landscape.

Email: crshiyas@gmail.com

Appendix I
S. No. Abbreviation Description

1 ASCOII Improved Ant Colony

Optimization

2 COFAD Computerized Facilities Design

3 CRAFT Computerized Relative Allocation
of Facilities Technique

4 CVGA Conway and Venkatraman Genetic

Algorithm

5 DERFLP Dynamic Extended Row Facility
Layout Problem

6 DFLP Dynamic Facility Layout Problem

7 DP Dynamic Programming

8 EDA Estimation of Distribution
Algorithm

9 FLP Facility layout problem

10 GA Genetic algorithm

11 HAS Hybrid Ant System

12 hGA Hybrid Genetic Algorithm

13 HPSO Hybrid Particle Swarm
Optimization

14 HTABU Heuristic Tabu

15 IGD Iterated Great Deluge

16 LS Local Search

17 MHC Material Handling Cost

18 Mod SA Modified Simulated Annealing

19 PWX Pair-Wise Exchange

20 QAP Quadratic Assignment Problem

21 QIP Quadratic Integer Programming

22 RWS Roulette Wheel Selection

23 SA Simulated Annealing

24 SABFO Simulated Annealing Bacterial

Foraging Optimization

25 SFLP Static Facility Layout Problem

26 SGA Simple Genetic Algorithm

27 SM Swap Mutation

28 SPC Single Point Crossover

29 TABUSA Tabu List Simulated Annealing

30 TC Termination criteria

31 VNS Variable neighbourhood search

mailto:crshiyas@gmail.com

