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1.Introduction 
Emotions play a huge role when a person want to 

express something [1]. However, some people are not 

able to express their emotions. Therefore, in such 

cases, emotion recognition methods are used to detect 

emotions [2]. Emotion recognition can be done in 

many ways, using speech [3], facial expressions of the 

person [4], and heart rate of the person [5]. While 

using facial expressions to detect the emotions, one 

can easily fake the emotions. Even using the heart 

signals to detect emotions, fake emotions are detected 

sometimes. In addition to the first two methods, there 

is another way in which signals from the brain are 

directly used to detect a person's emotions, as 

explained in the research by Liu et al. [6].  
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This process falls under the domain of brain computer 

interface (BCI) [7, 8], utilizing 

electroencephalography (EEG) [9] signals for emotion 

detection. 

 

Many research questions require exploration while 

considering BCI, such as how paralysis affects 

communication. Longo et al. [10] explained BCI and 

its relation to paralysis. Can a person who is paralyzed 

completely does have healthy brain function? Sensors 

can track specific physiological events within the 

brain, which correspond to particular types of brain 

function, and allow for direct communication with the 

human brain [11]. Using these technologies, 

researchers have developed BCI, enabling the creation 

of communication systems independent of the brain's 

conventional output channels, such as muscles and 

peripheral nerves. Vansteensel et al. [12] elucidated 

how BCI aids in communication. Instead, users 
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Abstract  
This study aimed to develop an emotion recognition model using brain signals. The brain computer interface (BCI) focuses 

on creating technology that enables direct brain-to-external device connections. There are two forms of BCI: invasive and 

non-invasive. In BCI, electroencephalography (EEG) is essential. EEG is a non-invasive method that involves applying 

electrodes to the scalp to capture electrical activity in the brain. EEG data is utilized to decode the user's intended emotions, 

activities, and thoughts. Emotions are important for human interaction, communication, and overall well-being. Many 

paralyzed people worldwide are unable to express their emotions or meet their needs, making it difficult to understand them, 

which leads to feelings of isolation. However, it is possible to detect emotions using BCI. Emotions are reflected in electrical 

brain activity and can be analyzed using EEG signals. The EEG signals are then decoded to detect a person's respective 

emotions. The decoding process mainly includes three steps. First, the signals are pre-processed to remove noise, and data 

is encoded. Second, the relevant features are extracted using the spectral power method. Third, emotions are classified 

using long short-term memory (LSTM), gated recurrent unit (GRU), and bidirectional long short-term memory (BiLSTM) 

algorithms. New EEG data is given to the model, and then emotions are displayed. The model developed using BiLSTM 

achieved an accuracy of 93.97%. A comparison was made with existing classification techniques that have used many three-

dimensional (3D) models and the arousal-valence ratio to identify a person's emotion. The model's generalization will 

improve further by testing it on different types of datasets. The model's generalization improves further by testing it on 

different types of datasets. 
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actively manipulate the parts of their brain capable of 

operating computers or communication gadgets. 

 

1.1Brain computer interface 

The history of BCI and EEG traces back to the early 

20th century when researchers first began studying 

electrical activity in the brain. In 1924, Hans Berger 

recorded the first human EEG, laying the foundation 

for understanding brainwave patterns [13]. BCI 

development gained momentum in the late 20th 

century with advances in computing and neuroscience, 

leading to applications in medicine, communication, 

and gaming. EEG, as a non-invasive method to 

measure brain activity, became pivotal in BCI research 

due to its accessibility and versatility. Over time, BCI 

and EEG have evolved with technological 

advancements, fostering interdisciplinary 

collaborations and innovations that continue to 

explore the potential of direct brain-computer 

communication for various practical and therapeutic 

purposes. 

 

BCI establishes an intimate connection with the 

human brain and an external entity, such as a machine 

or a prosthetic limb, as described by Khan et al. [14].  

Bridging the gap between the brain and technology, 

BCIs enable the transfer of information in both 

directions, allowing individuals to control devices 

with their thoughts or receive sensory feedback 

directly into their brains [15]. Using an array of 

sensors or implants, BCIs detect and interpret 

electrical signals or neural activity generated by the 

brain. These signals are translated into commands, 

data that can be understood by the connected device 

[16]. This is another application of BCI where data 

collected is decoded as explained by Song et al. [17]. 

This novel interface has enormous promise for a wide 

range of applications, including supporting persons 

with impairments in recovering movement and 

independence, increasing human capacities, and 

opening up new possibilities for scientific inquiry 

some others are explained by Mak et al. [18]. 

 

Marcia et al. explained in their study that there are two 

types of BCI, invasive BCIs and non-invasive BCIs 

[19].  Electrodes or sensor arrays are inserted right into 

brain cells in invasive BCIs [20]. These electrodes 

record neural activity with high precision and signal 

quality. Invasive BCIs typically used for research 

purposes. In cases where high-level control or fine-

grained signal detection is required. However, due to 

the invasive nature of the procedure, they are less 

commonly used in clinical applications. Non-invasive 

BCI [21] uses different signals collected from the 

brain. They are EEG BCIs, functional near-infrared 

spectroscopy (FNIRS) BCIs [22], and 

magnetoencephalography (MEG) BCIs [23]. This 

study focuses on EEG data. 

 

1.2Electroencephalography   

EEG data is gathered by placing electrodes on the 

scalp to detect and measure brain electrical activity. 

Al-nafjan et al. [24] explored the use of EEG data 

within BCI. Standardized electrode placement 

systems, such as the worldwide 10-20 or 10-10 

system, are commonly used. These systems make 

electrode placement suggestions based on anatomical 

landmarks on the scalp. When the electrodes are 

implanted, they detect the electrical impulses 

produced by the neurons in the brain. Then to amplify, 

digitize, and record these impulses, an EEG amplifier 

is employed. The information results in a temporal 

series of voltage readings representing the electrical 

activity at each electrode site. 

 

Extracting emotions from the brain signals is very 

hard. Zhang et al. [25] and Wei et al. [26] emphasized 

the necessity of incorporating a significantly large set 

of features into the BCI model to achieve enhanced 

accuracy. Mutawa and Hassouneh [27] mentioned 

some other challenges including complexity and 

generalizability. In this paper, a model was developed 

for overcoming challenges and helping paralyzed 

persons to express their real emotions. The main 

objective of this paper is to develop an architecture 

that identifies the inner emotions of a person using 

EEG signals. The system leverages both software and 

hardware components, focusing on preprocessing, 

feature extraction, and classification using neural 

network models like bidirectional long short-term 

memory (BiLSTM). The aim is to create a highly 

accurate model that can classify emotions based on 

EEG data, with a particular focus on improving the 

model's generalization. 

 

The rest of the paper is organized as follows: literature 

review is discussed in Section 2. Section 3 covers the 

methods used and the dataset for experimentation. 

Results are illustrated in Section 4. It is illustrated in 

Section 5. Finally, conclusions are presented in 

Section 6. 

 

2.Literature review 
There are a variety of applications related to our study 

that vary in terms of methodology and 

instrumentation. Some also differ in terms of the 

mechanism employed to forecast emotions. In all 

applications, two main approaches are used: one 
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involves using valence arousal rating, and the other 

involves using EEG data. To tackle the problem of 

long-term dependencies, Wei et al. [28] introduced 

simple recurrent networks (SRN). SRN was employed 

in this process to manage temporal dependencies, 

which involve considering how expressions change 

over time. The original signal underwent dissection 

through the dual tree complex wavelet transform 

(DTCWT). Subsequently, time, frequency, and 

nonlinear analyses were applied to extract its 

characteristics. Then ensemble learning is used to 

classify emotions. The accuracy achieved for this 

model is 75. They used the EEG dataset in their work. 

    

Pandey and Seeja [29] introduced a study where they 

presented a subject utilizing EEG data independent of 

individual variation. Feature extraction using the 

variational mode decomposition (VMD) approach, 

deep neural networks are employed to classify an 

individual's emotions. The classification of emotions 

was based on dimensions. Emotions are expressed in 

the dimensional model along several dimensions, 

including valence, arousal, dominance, and 

liking/disliking. The individuals are asked to score 

their feelings on valence and arousal ratings before 

EEG recording. The accuracy achieved for this model 

is 62. In their investigation, they used the dataset for 

emotion analysis using physiological signals (DEAP) 

dataset. 

 

Li et al. [30] devised a model addressing individual 

differences by combining a meta-transfer learning 

(MTL) technique with a multiscale residual network 

(MSRN). The MSRN served to categorize emotions 

and illustrate EEG data connectivity aspects. 

Employing the MTL approach involved training on 

one dataset and testing on another. The valence ratio 

was utilized for emotion categorization, yielding an 

accuracy of 72 for this model. They conducted testing 

on the sjtu emotion EEG dataset (SEED) dataset and 

training on the DEAP dataset. 

 

A method of emotion identification based on inter-

subject variability was proposed by Peng et al. [31] 

using time-frequency analysis methods like wavelet 

transform and spectrogram analysis, a collection of 

characteristics taken from each epoch of EEG data.  A 

combined feature adaption strategy lessens the domain 

disparity between the training and testing data. The 

disparity is reduced by learning a mapping function 

that changes the training data's characteristics to 

resemble the testing data. The graph was constructed 

to model the relationships between the epochs of EEG 

signals. The label of each epoch is updated based on 

the labels of its neighboring epochs in the graph. 

Lastly, emotions are classified. They built their model 

using the SEED-IV dataset. 

 

Bano et al. [32] developed a system that uses time-

domain analysis and statistical measures to extract 

relevant characteristics from the EEG signals. A 

support vector machine (SVM) classifier is used to 

classify the user's emotional states. The experiments 

conducted in the study show promising results in 

identifying four different emotional states. The 

accuracy achieved for this model is 80. Categorical 

emotions are classified using the SVM model. In this 

paper, they made use of the EEG dataset. 

 

Tao et al. [33] propose a novel EEG-based emotion 

identification system that enhances accuracy by 

utilizing channel-wise attention and self-attention 

strategies. System three components are feature 

extraction and methods mentioned. Utilizing publicly 

accessible data, the authors conducted studies and 

outperformed cutting-edge techniques with an 

accuracy of 80.05. The article offers a thorough 

examination of how each component affects the 

system's overall effectiveness. The suggested 

technology may have useful applications in situations 

seen in the actual world. They used data from the 

DEAP project. 

    

Salankar et al. [34] proposed and investigated the 

empirical mode decomposition (EMD) approach and 

its second-order difference plots (SODP) for 

categorizing emotions in the quadrants of high and low 

arousal and dominance. Using SVM, there are two 

hidden layers, a multilayer perceptron is used to 

categorize emotions into binary and many classes 

according to their valence, arousal, dominance, and 

liking. This model's accuracy score is 80 percent. The 

DEAP dataset was used by them. 

 

Wang et al. propose a method utilizing electrode-

frequency distribution maps (EFDMs) derived from 

short-time Fourier transform for simplifying EEG 

signal representation [35]. Their approach involves 

automatic feature extraction from EFDMs and 

leveraging deep convolutional neural networks 

(CNN), particularly those with residual block 

architectures, to enhance emotion classification 

accuracy. They recommend transfer learning 

techniques to generalize models across datasets, 

addressing limitations associated with limited EEG 

datasets and individual variability in emotions. 

Experimental evaluations on SEED and DEAP 

datasets demonstrate notable performance 
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improvements. Additionally, visualization methods 

like gradient-weighted class activation mapping offer 

insights into learned features, aiding in understanding 

EEG-based emotion identification. However, 

challenges may arise regarding the interpretability of 

learned features and the scalability of the approach to 

larger datasets. 

 

Dharia et al. discuss the significance of emotion 

regulation, particularly for elderly individuals with 

frontal lobe atrophy, proposing EEG-based emotion 

identification [36]. They introduce a multimodal deep 

learning approach integrating EEG and eye movement 

data, incorporating an attention mechanism layer to 

fuse features from both modalities. Testing on SEED-

IV and SEED-V datasets yields average accuracies of 

67.3% and 72.3%, respectively. The study's 

implications for evaluating emotional regulation in 

clinical and research contexts, particularly concerning 

age-related cognitive changes, highlight the potential 

of multimodal deep-learning models for subject-

independent emotion identification. However, 

challenges may arise in interpreting the combined 

features and addressing data variability across 

different age groups and clinical conditions. 

 

Farokhah et al. propose a cooperative strategy for 

EEG-based emotion identification, integrating CNN, 

power spectral density-based channel selection, and 

two-dimensional (2D) EEG scalograms to mitigate 

cross-subject validation challenges and computational 

complexity [37]. Experimental findings on the DEAP 

dataset demonstrate improved emotion detection 

accuracy, particularly in cross-subject validation 

settings. The method offers advantages in enhancing 

emotion recognition accuracy while reducing 

computational overhead. However, limitations may 

arise in generalizing the approach across diverse 

datasets and experimental conditions, necessitating 

further research for comprehensive validation. 

 

Hwang et al. introduce a method for EEG-based 

emotion identification, utilizing a multi-task deep 

neural network to address subject-dependency issues 

[38]. Their approach categorizes subject-independent 

emotional labels and prevents model differentiation 

between subject labels through adversarial learning 

with three modules: adversarial, subject classification, 

and emotion classification. By applying a 

randomization function to confound subject labels, the 

model is trained to generalize across different subjects. 

Evaluation of the SEED dataset demonstrates 

improved performance, with an average accuracy of 

75.31% and a low standard deviation of 7.33%. 

Advantages include enhanced performance in EEG-

based emotion identification, while limitations may 

arise in generalizing the method to diverse datasets 

and experimental conditions, warranting further 

investigation. 

 

Dhara et al. present a novel fuzzy ensemble-based 

deep learning method to address challenges in EEG-

based emotion identification [39]. Their approach 

incorporates the Gompertz function with three deep 

learning models to a fuzzy rank-based technique. 

Evaluation of the DEAP and AMIGOS datasets 

reveals high accuracy in valence and arousal 

dimensions, surpassing 80% on DEAP and attaining 

state-of-the-art performance on AMIGOS. The 

method showcases strong performance in subject-

dependent and subject-independent configurations, 

indicating its utility for EEG-based emotion 

recognition. However, limitations may include 

potential overfitting due to the complexity of the 

ensemble model, and further research is warranted to 

explore its generalizability to other datasets and 

experimental settings. 

 

Keelawat et al. introduce a CNN-based methodology 

for EEG-based emotion identification during music 

listening, aiming for subject-independent performance 

[40]. They evaluate various CNN architectures for 

binary classification tasks related to arousal and 

valence without explicit feature extraction, utilizing 

information from electrodes and time steps. Through 

10-fold cross-validation, promising accuracy rates of 

81.54% for arousal and 86.87% for valence are 

achieved, indicating the model's capacity to capture 

EEG signal patterns across individuals. The model 

exhibits superior generalization compared to previous 

techniques, as demonstrated by leave-one-subject-out 

validation, suggesting its potential for subject-

independent emotion identification during music 

listening. However, potential limitations may include 

the need for further validation across diverse music 

genres and populations to ensure robustness and 

generalizability. 

 

Kanuboyina et al. present a deep learning-based 

technique for automated emotion state categorization 

using EEG data, addressing previous methodological 

limitations [41]. They preprocess EEG signals from 

real-time and DEAP databases to eliminate noise and 

utilize differential entropy (DE) and power spectral 

density methods for meaningful information 

extraction. Feature reduction and emotion state 

categorization are conducted via principal component 

analysis and artificial neural networks. Experimental 
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findings reveal superior accuracy compared to 

standard SVM on both datasets, showcasing the 

method's effectiveness in EEG-based emotion state 

categorization. While advantageous for its enhanced 

performance, potential limitations may include the 

need for further validation across diverse datasets and 

experimental conditions to ensure robustness and 

generalizability. 

 

Hancer and Subasi proposed an EEG-based 

framework for emotion identification, consisting of 

preprocessing, feature extraction, feature selection, 

and classification phases [42]. Utilizing DTCWT for 

feature extraction and multi-scale principal component 

analysis with sysmlets-4 filtering for preprocessing, 

the method employs various statistical criteria for 

feature dimension reduction and ensemble classifiers 

for classification. The framework demonstrates 

promising results in accurately recognizing emotions 

from EEG data. However, its effectiveness may be 

influenced by the choice of statistical criteria and 

ensemble classifiers, necessitating careful selection 

and validation. Additionally, further research is 

needed to assess its performance across diverse 

datasets and experimental conditions to ensure its 

robustness and generalizability in real-world 

applications. 

 

Sharma et al. propose a method for online recognition 

of human emotions using EEG signals, employing 

deep learning algorithms and nonlinear higher-order 

statistics [43]. The approach involves decomposing 

EEG data into sub-bands and exploring their nonlinear 

dynamics to precisely detect emotional states. Data 

reduction is achieved through particle swarm 

optimization, followed by long short-term memory 

(LSTM) based deep learning to uncover emotional 

fluctuations. Experimental results on the DEAP 

dataset demonstrate accurate and rapid emotion 

recognition. While the method offers promising 

advantages in terms of accuracy and speed, potential 

limitations may include challenges in generalizing 

across diverse datasets and real-world scenarios, 

necessitating further validation and refinement. 

 

Liu et al. propose a novel EEG emotion identification 

framework combining CNN and transformer 

topologies, aiming for interpretability [44]. The 

method integrates spatial convolution for channel 

connections and temporal convolution for information 

extraction, along with a transformer module for 

spatiotemporal data fusion. Experimental results 

underscore the influential role of specific EEG bands 

in emotion identification, demonstrating superior 

performance compared to CNN and LSTM based 

models. Additionally, the model utilizes a customized 

convolution kernel for efficient high-frequency noise 

filtering. While offering enhanced interpretability and 

noise reduction capabilities, potential limitations may 

include challenges in model interpretability with 

complex neural architectures and the need for further 

validation across diverse datasets and real-world 

contexts to assess generalizability. 

 

Li et al. presented an EEG-based technique for 

emotion identification that selects and extracts 

features based on common spatial patterns [45]. An 

optimized frequency band and channel subsets are 

identified using a nonparametric test, that improves 

the accuracy of the emotion identification process. 

Batch normalization mitigates the influence of 

individual variances, thereby further enhancing 

performance. Evaluation using traditional classifiers 

indicates that the approach effectively distinguishes 

between emotional states. However, the methodology 

may require meticulous parameter adjustment. 

Applicability is limited to dataset characteristics. 

 

After careful investigation of all the methodologies 

proposed by different authors, it is clear that the DEAP 

and SEED are the most used datasets by all the authors 

except some authors. Other authors used valence and 

arousal ratings, signals of EEG. We preferred the 

SEED dataset to detect real emotion through signal 

processing and addressed some challenges by authors. 

The main challenges are complexity and 

generalization. We tried to achieve these challenges 

through the proposed work.  

 

3.Methods 
3.1Software and hardware requirements 
3.1.1Data collection 

Liu et al. from Shanghai Jiao Tong University created 

an EEG signal dataset called SEED-V for various 

EEG-based emotional evaluation tasks [46]. The 

dataset is available for download on the SEED 

website. This collection utilizes EEG data from EEG 

signals for a variety of purposes. For preprocessing the 

raw EEG data bandpass filter is used to eliminate noise 

and artifacts. The website provides raw EEG data 

samples and feature-extracted data using the DE 

feature extraction technique. Both data samples are 

used and compared with three different models. 

 

3.2Dataset preparation 

The dataset comprises raw EEG data, which 

undergoes data cleaning and data transformation. In 

the data cleaning phase, mean imputation, a popular 
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and straightforward method for addressing missing 

values, is employed. By calculating the mean value for 

each column, we obtain a representative measure of 

central tendency that can used to fill in the gaps caused 

by missing data. The data provided by the seed website 

is already clean and free from artifacts. This approach 

is employed to ensure that the data contains no missing 

values, thus enhancing the model's effectiveness with 

unknown data. 

 

 

The transformation of the data involves two steps: 

standardizing the input data using the StandardScaler 

method from the sklearn library and encoding the 

labels. The emotions are labeled as 0: 'Disgust', 1: 

'Fear', 2: 'Sad', 3: 'Neutral', and 4: 'Happy'. The labeled 

data is encoded using encoding techniques. 

StandardScaler is a preprocessing class from the 

popular Python machine-learning library sci-kit-learn, 

designed to scale the features of a dataset so that they 

have a mean of zero and a variance of one. Equation 1 

is the standardization formulae where x is the input 

sample, m, s are the mean and standard deviation of 

the dataset, and z is the score. 

𝑧 =
(𝑥−𝑚)

𝑠
    (1) 

 

The technique of one-hot encoding is utilized to 

represent categorical or discrete data as binary vectors. 

Each category is assigned a unique binary pattern, 

where only one bit is active (1) and all others are 

inactive (0). Some models, like the BiLSTM model, 

require the label data to be in encoded form for input. 

So, encoding the data is a must before giving data to 

the model. This scheme allows the model to treat each 

emotion category equally, preventing it from inferring 

any numerical relationships between emotions. 

 

3.3Feature extraction 

This process entails computing power within 

predefined frequency bands such as theta, alpha, beta, 

and gamma to capture the intensity of brain activity 

linked to various emotional states. The frequency 

range of the respective bands is defined as follows: 

delta (1, 4), theta (4, 8), alpha (8, 13), beta (13, 30), 

and gamma (30, 50). The electrical velocities of the 

channels are then added, and the mean is taken for 

each band limit. These features encapsulate the 

underlying neural dynamics, offering valuable insights 

into the neural mechanisms behind emotions. By 

quantifying the strength of specific frequency 

components, spectral power features provide a concise 

representation of EEG signals, enabling machine 

learning models to discern and classify emotional 

states effectively. This approach encapsulates both 

temporal and frequency aspects of EEG data, making 

it a crucial tool in understanding and decoding the 

intricate relationship between brain activity and 

human emotions. 

 

3.4Classification 

Initially, the data is partitioned into training and testing 

sets, comprising 70% and 30% of the data, 

respectively. Consequently, the data is segmented into 

four sections. During training, both the data and labels 

are utilized. The shapes of the training and testing 

samples are adjusted to suit the model's requirements. 

In the case of recurrent neural networks, the typical 

input shape is (number of samples, number of 

timesteps, number of features). By reshaping the data 

to adhere to this shape, we ensure the creation of a 

Sequential model object. 

 

The model was developed by including a 64-unit 

BiLSTM layer with a rectified linear unit (ReLU) 

activation function defined as Equation 2 where i is 

input. For obtaining all layer's output sequences, the 

return_sequences option is set to True. Overfitting was 

mitigated by introducing a dropout layer after the 

initial BiLSTM layer, randomly deactivating a portion 

of the input units to 0 during each training update. 

Subsequently, another BiLSTM layer with 32 

units was added, featuring a sigmoid activation 

function specified as Equation 3. Within the second 

BiLSTM layer, a dropout layer and a dense layer 

with five units were added, representing the number of 

emotion classes. The activation function is SoftMax 

defined as Equation 4 where x_i is the present input 

data, x_j is previous data, and it produces a probability 

distribution across the classes. 

𝑓(𝑖) =  𝑚𝑎𝑥(0, 𝑖) = {
𝑖 𝑖𝑓 𝑖 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

0 𝑖𝑓 𝑖 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (2) 

𝑓(𝑖) =
1

1+𝑒^−𝑖
    (3) 

𝑓(𝑥𝑖) =
𝑒^(𝑥_𝑖 )

∑(𝑒^(𝑥_𝑗))
    (4) 

 

3.5Proposed approach 

Figure 1 illustrates the proposed procedure for 

emotion recognition from EEG data. It includes the 

training process, evaluation of model performance, 

testing with new sample data, and displaying the 

predicted emotion. To increase the performance of the 

model and the optimized output, the EEG data is first 

taken from the dataset and then goes through data 

cleaning by managing missing values. The following 

stage is data preparation, which includes a number of 

procedures including one-hot encoding and 

standardization since, as we all know, these are crucial 

phases in the model-building process. It goes through 
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testing and training following the feature extraction. 

The model that has been utilized is the BiLSTM 

model, which produces the best-optimized output 

when compared to other algorithms. The training 

procedure explains the model and how it was trained. 

The entire procedure, including the phases taken into 

account in the model proposed below, is crucial to 

creating the optimal model. 

 

 
Figure 1 Proposed approach 

 

The model was trained using the training data 

by calling the fit () method. Adam, short for adaptive 

moment estimation, was employed as an extension of 

stochastic gradient descent. It computed adaptive 

learning rates for each parameter, aiding faster 

convergence and necessitating less hyperparameter 

tuning.  As the model is multi-class, labels were 

encoded before the categorical_crossentropy loss 

function was used. The input data is sent forward 

throughout the layers of the model as it trains. The 

model training algorithm is outlined below: 

 
Algorithm 1: BiLSTM model 

Start 

Step 1: Split the data into training and testing parts in the 

ratio of 70:30 

Step 2: Reshape the training and testing data for neural 

network 

Step 3: Build BiLSTM Model () 

Recurrent neural network (RNN) with 2 hidden layers, 

dropout layers, dense output layer 

Step 4: Compile the developed model with loss function, 

evaluation metrics  

Step 5:  Train the BiLSTM model with the reshaped 

training data with max_epochs=15 epoch=1  

Step 6: Loop until epoch>max_epochs 

 Loop: For each (x_input, y_target) pair 

  Forward pass: 

  Step 6.1: Pass the input x_input to first BiLSTM 

layer 

  h1=ReLU(w1*x_input+u1*h_prev1+b1) 

  Step 6.2: Apply drop out to h1 with dropout 

rate=0.2 

  Step 6.3: Apply the second BiLSTM layer with 

sigmoid activation 

  h2=Sigmoid(w2*h1+u2*h_prev2+b2) 
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  Step 6.4: Apply drop out to h2 with dropout 

rate=0.2 

  Step 6.5: Apply the dense BiLSTM layer with 

softmax activation 

  Output=(w_dense*h2+b_dense) 

  cal_output=Softmax(output) 

  Step 6.6: Compute the loss between cat_output and 

y_target 

  Backpropagation: 

  Update the model weights and biases using adam 

optimizer update rule 

 Calculate training loss, evalution metrics and store 

them for each pair 

 End Loop 

 Increment epoch number by 1 

Stop 

 

Algorithm 1 starts with designing the model. Every 

layer conduct calculation and transmits the results to 

the following layer. The model has a total of 5 layers 

with two dropout layers in between them to reduce the 

overfitting of the model. The first BiLSTM layer has 

64 memory units, the third BiLSTM layer has 32 units, 

and the last layer has five units since the classes are 

five and it is one hot encoded. The model performs 

backpropagation using the loss value to determine the 

gradients of the loss concerning the weights and biases 

of the model. Hold-out validation is used for the 

validation process using the test data divided before 

model design. For every epoch, the validation is 

performed with the test data and labels. This procedure 

determines the contribution of each weight and bias to 

the total error and assists in adjusting them 

accordingly. We have done the project in 3 models. 

LSTM and gated recurrent unit (GRU) do not perform 

well compared to BiLSTM. However, BiLSTM 

achieved a high accuracy among all the other models. 

 

4.Results 
To detect the real emotions of a person from EEG data 

of the brain, a dataset called SEED-V was used. Data 

pre-processing techniques were performed to remove 

noise and avoid incorrect results. Next, the model was 

trained using the LSTM algorithm of the RNN. The 

output can be any of the five classes: disgust, happy, 

fear, sad, and neutral. The accuracy achieved for the 

model is 82.63%. To further enhance the efficiency of 

the proposed work, two additional models of RNN 

were used, both of which demonstrated superior 

performance compared to the LSTM. GRU achieved 

an accuracy of 89.76% whereas the BiLSTM model 

achieved an accuracy of 93.97%. The BiLSTM is the 

best-performing model among the three. Except for 

the disgust emotion, all models performed well, and 

BiLSTM has performed better for all labels, due to its 

ability to capture information from past and future 

contexts. The new data is sent as input and checked 

whether the model correctly predicts the emotion of 

the data or not, and the resulting emotion is displayed. 

 

4.1Performance evaluation 

Three models were developed: initially, the LSTM 

model, followed by the BiLSTM and GRU models to 

enhance functionality. BiLSTM outperformed LSTM, 

achieving higher accuracy. This study evaluates and 

compares the performance of LSTM, GRU, and 

BiLSTM. Performance criteria used to evaluate the 

classification models include accuracy, precision, 

recall, and F1-score. BiLSTM and LSTM tend to have 

slightly higher complexity compared to GRU. The 

training time for GRU is also less due to its fewer gates 

and parameters. However, considering performance, 

BiLSTM performed the best (Table 1). 

 

Table 1 Evaluation measures for LSTM, GRU, and Bi 

LSTM 
Model Accuracy    Precision     Recall       F1-score 

LSTM     82.63          86.75          82.63          76.63 

GRU     89.76          92.14          89.76          88.58 

BiLSTM     93.97          94.69          93.98          93.53 

 

4.2Experimental results 

The confusion matrix illustrates the counts or 

percentages of true positive, true negative, false 

positive, and false negative predictions made by the 

model for each class. It showcases the effectiveness of 

a classification model and offers detailed insights into 

the reasons for the model's errors and predictions. 

Figure 2 and Figure 3 represent the confusion matrix 

of the LSTM and GRU models when applied to the test 

data. The proportion of correctly identified labels was 

higher compared to incorrectly recognized labels. The 

disgust class exhibited more false predictions for both 

models.  GRU model predicted more samples as sad 

which were labelled disgust. To address this issue and 

reduce false negatives, an enhanced model, BiLSTM 

was trained. Ultimately, the BiLSTM model achieved 

an impressive accuracy of 93.97%. 
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Figure 2 Confusion matrix for LSTM model  Figure 3 Confusion matrix for GRU model 

 

Figure 4 represents the confusion matrix of the 

BiLSTM model. Reduction in false predictions for the 

disgust class, with the majority class sad being 

predicted for incorrect predictions, likely due to class 

imbalance. Balancing of class may give good results. 

Figure 5 illustrates a graph displaying the accuracy 

achieved by the three different models across each 

epoch of the training period. It was observed that the 

accuracy of all three models gradually increased as the 

number of epochs increased. A confusion matrix is a 

table that showcases a machine learning model's 

performance by comparing predicted outcomes with 

actual ones. It delineates true positives, true negatives, 

false positives, and false negatives, offering insights 

into the model's accuracy and error patterns. By 

visualizing these metrics, it helps analysts evaluate the 

model's strengths and weaknesses, guiding 

improvements for enhanced predictive capabilities. 

 

 
Figure 4 Confusion matrix for BiLSTM model                Figure 5 Comparative analysis graph 

        

5.Discussion 
Even though the developed model was based on one 

particular dataset, the proposed work can fit unseen 

data also if followed by the same feature extraction 

method. Methods for addressing missing data and 

artifacts proposed. Given data with varying numbers 

of emotions and diverse emotion evaluation tasks, 

modifications to the model architecture are necessary. 

Model generalization is one of the limitations of the 

proposed work. Table 2 represents the tabular 
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representation of the related works with the proposed 

work. The accuracy of the model is increased 

compared to others. The model achieved better 

accuracy than all previous works because of the 

dataset with more samples. The feature extraction 

technique and the recurrent models increased the 

model's accuracy. 

 

Table 2 Comparison of prior relevant implementations with the proposed work 

Literature Dataset Algorithms Accuracy 

Wei et al. [27] SEED SRN 75% 

Pallavi et al. [28] DEAP VMD 62% 

Jinyu et al. [29] DEAP MTL, MSRN 72% 

Peng et al. [30] SEED-IV Joint Feature Adaption 65% 

Bano et al. [31] SEED SVM 80% 

Tao et al. [32] DEAP Channel Wise Attention 80.05% 

Nilima et al. [33] DEAP SVM 80% 

Proposed Work SEED-V BiLSTM  93.97% 

 

5.1Limitations 

The proposed algorithm was based on one private 

dataset provided by the SEED website. The 

generalization of the model increases by testing it on 

different types of datasets. This was one of the 

limitations of the proposed work. In scenarios where 

an individual experiences mixed emotions, such as 

encountering something they both hate and fear, they 

may feel disgusted and fearful at the same time. In 

such cases, accurately predicting a single emotion 

becomes challenging. Sometimes, the combination of 

two emotions may result in different predictions. A 

complete list of abbreviations is listed in Appendix I. 

 

6.Conclusion and future work 
This study covered the BCI and RNN algorithms used 

in emotion recognition. A person's pulse and facial 

expressions can both reveal their emotions. In this 

study, a technique utilizing brain signals to categorize 

and predict emotions was explored. The SEED V 

dataset was obtained from the SEED website for the 

experimentation. The data was pre-processed, and 

significant features were extracted. Due to the cleaned 

data from different sessions and trials from the SEED 

website, the model generalized better. The data was 

standardized and encoded during preprocessing. The 

model was then constructed by determining the 

number of hidden, dropout, and dense layers needed. 

The data was separated into train and test sets, and the 

model was trained accordingly. Upon examining the 

model's performance, it displayed a 93.97% accuracy 

rate. When new data was fed into the model, the 

projected emotion was revealed. By evaluating and 

comparing the performance of these models, 

researchers gain valuable insights into their strengths 

and weaknesses in capturing emotional signals from 

EEG data. 

 

In the future, the work can be enhanced by 

incorporating data on artificially generated emotions 

created by users, alongside real-time implementations. 

Additionally, further development of the model is 

necessary to improve its ability to predict system 

responses when mixed emotions are present. 
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Appendix I 

S. No. Abbreviation Description 

1 3D Three-Dimensional 

2 2D Two-Dimensional 

3 BCI Brain Computer Interface 

4 BiLSTM Bidirectional Long Short-Term 
Memory 

5 CNN Convolutional Neural Networks 

6 DE Differential Entropy 

7 DEAP Dataset for Emotion Analysis 

Using Physiological Signals 

8 DTCWT Dual Tree Complex Wavelet 

Transform 

9 EEG Electroencephalography 

10 EFDMs Electrode-Frequency Distribution 
Maps 
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11 EMD Empirical Mode Decomposition 

12 FNIRS Functional Near-Infrared 

Spectroscopy 

13 GRU Gated Recurrent Unit 

14 LSTM Long Short-Term Memory 

15 MEG Magnetoencephalography 

16 MSRN Multiscale Residual Network 

17 MTL Meta-Transfer Learning 

18 ReLU Rectified Linear Unit 

19 RNN Recurrent Neural Network 

20 SEED SJTU Emotion EEG Dataset 

21 SODP Second-Order Difference Plots 

22 SRN Simple Recurrent Networks 

23 SVM Support Vector Machine 

24 VMD Variational Mode Decomposition 

 

 


