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Abstract

The salp swarm algorithm (SSA) was introduced as a method for efficiently selecting the optimal location, size, and type
of distributed generation (DG) in a distribution system. SSA is a probabilistic algorithm that simulates the behavior of a
population of agents, specifically by replicating the foraging behavior of salps in water. Salps often form cohesive groups
called salp chains in deep waters. This behavior enables them to optimize locomotion through coordinated and swift
movements while maximizing their foraging efficiency. This study investigated three types of DG: photovoltaic (PV),
wind, and diesel. The methodology distinguishes between different types of DG, determines their optimal placement, and
optimizes their sizing for maximum performance. Simulations are conducted on the IEEE 69-bus system. The results
indicate that the proposed SSA approach successfully identifies the most suitable sites, sizes, and types of DG. A
benchmark comparison is performed to assess the effectiveness of the proposed SSA method against the evolutionary
programming (EP) approach. The results demonstrate that SSA outperforms EP in reducing power losses and improving
the voltage profile.

Keywords
Salp swarm algorithm (SSA), Distributed generation (DG), Foraging behavior, IEEE 69-bus system, Evolutionary
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1.Introduction However, the integration of DG requires careful
The growing demand for electricity has placed consideration of factors such as optimal placement,
significant stress on power systems, leading to higher sizing, and type selection to maximize its benefits
power losses, voltage instability, and increased while maintaining system stability and reliability [5].
operational costs. Traditional centralized power

generation models often lead to inefficiencies due to Despite its advantages, DG implementation presents
transmission constraints and distribution losses [1]. challenges related to system stability, power quality,
Distributed generation (DG) has emerged as a viable and economic feasibility. Poorly planned DG
solution to alleviate these issues by integrating small- placement and sizing can cause voltage fluctuations,
scale, decentralized power sources such as solar increased losses, and undesirable power flow effects
photovoltaics (PV) and wind turbines (WT) within [6]. Identifying the optimal location, size, and type of
distribution networks. DG units enhance grid DG is crucial to maximizing efficiency while
resilience, reduce transmission losses, improve minimizing power losses and operational costs [7].
voltage profiles, and contribute to a more sustainable Many  existing methods lack a  robust,
and efficient power system [2—4]. computationally efficient solution that guarantees

system-wide improvements [8]. Therefore, a more
advanced optimization approach is necessary to
address these challenges effectively. This paper aims
*Author for correspondence to develop an optimization framework based on the
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salp swarm algorithm (SSA) to determine the optimal

placement, sizing, and type of DG units in a

distribution network. SSA is easier to construct than

most other evolutionary algorithms due to its
uncomplicated design and minimum parameter
tuning requirements [9]. This characteristic makes

SSA a suitable choice for solving complex problems.

The primary objective of this study is to improve

voltage stability, reduce power losses, and enhance

overall system efficiency. The key contributions of
this paper include:

o A novel application of the SSA for optimizing the
placement, sizing, and selection of DG units to
enhance power system performance.

e A comparative analysis of the proposed method
against existing optimization techniques to
establish its effectiveness.

o Performance evaluation of the SSA-based
approach using standard test distribution networks.

o A demonstration of the effects of optimal DG
integration on power loss reduction and voltage
profile improvement.

The paper is structured as follows: Section 2 provides
a comprehensive literature review of relevant studies.
Section 3 details the methodology, including DG
modeling, problem formulation, and the development
of the SSA. Section 4 presents the results, followed
by an in-depth discussion in Section 5. Finally,
Section 6 concludes the study and offers
recommendations for future research.

2.Literature review

Research indicates that improper placement and
sizing of DG units can lead to increased system
losses compared to systems without DG. Cortez et al.
[10] presented a study that utilizes particle swarm
optimization (PSO) to determine the most efficient
positioning and sizing of hybrid solar-wind DG units
in the IEEE 33-bus test system under three distinct
scenarios. The findings indicate that system voltage
improved and power losses were reduced when DG
was installed at an optimal location and size. A
similar trend is observed in [10], where optimal DG
placement and sizing result in reduced power losses,
improved voltage profiles, and enhanced system
stability. The sizing and allocation of DGs were
optimized by considering factors such as minimizing
power losses, improving voltage profiles, and
enhancing stability.

A stability index was introduced in [11], utilizing
Thevenin impedance within a distribution network.
Various artificial intelligence techniques, including
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PSO [12], Fractional Lévy flight bat algorithm [13],
dwarf mongoose optimization [14], whale
optimization algorithm [15], improved wild horse
optimization algorithm [16], and adaptive grey wolf
optimizer [17], have been applied to determine the
optimal placement and sizing of DG units. Heuristic
algorithmic approaches have demonstrated their
effectiveness in solving this problem, even when
addressing multiple objectives.

In the field of optimization, the SSA has recently
emerged as a promising approach [18]. It mimics the
collective behavior of salps as they search for food in
water. The algorithm designates the leading salp in
the chain as the leader, while the others act as
followers. The SSA method has proven effective in
solving multi-objective electric power load dispatch
problems, outperforming other algorithms [19]. It
maintains a balance between exploration and
exploitation, making it suitable for numerical and
engineering optimization problems. SSA has also
been successfully applied to hybrid photovoltaic-
thermoelectric generator (PV-TEG) systems to
optimize power extraction, achieving high-quality
GMPP solutions even with poor initial conditions due
to its robust and reliable search processes [20].
Furthermore, SSA improves power flow efficiency
by reducing fuel costs, power losses, and voltage
fluctuations while ensuring voltage stability in
electric power systems [21]. In this study, SSA is
chosen for solving the DG allocation problem due to
its demonstrated superiority in addressing various
optimization challenges.

Most previous studies have focused on a single type
of DG, with only a few exploring multiple DG types.
Yehia et al. [22] introduced a hybrid fuzzy-
metaheuristic approach to determine the optimal
sizing and placement of various DG types. The study
considered three scenarios: (1) a DG system with a
power factor of unity, (2) a DG system supplying
active and reactive power at a constant power factor
of 0.866 p.u., and (3) multiple DG systems injecting
active and reactive power at a variable power factor.
Although the proposed algorithm improved system
performance, the results did not specify the optimal
DG type.

The key challenge highlighted in the literature is the
complexity of optimizing DG placement, sizing, and
selection while ensuring system stability, reducing
power losses, and improving the voltage profile.
Incorrect DG placement can increase losses, and
integrating DG affects power quality and stability.
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Balancing multiple objectives requires advanced
optimization algorithms, but their efficiency varies.
Most studies focus on a single DG type, with limited
research on multi-DG integration and optimal DG
selection.

3.Methodology

The selection of the most suitable location, size, and
type of DG are determined by minimizing power
losses.  Furthermore, the impact of DG
implementation on the enhancement of the voltage
profile is also assessed. A comparison is made
between the performance of SSA and that achieved
through the utilization of the evolutionary
programming (EP) technique.

3.1Active power losses minimization

In this study, one of the primary requirements for
achieving an efficient operation of the distribution
network was the minimization of active power losses.
The specified criterion is presented in Equation 1.
Plosses = LiLy B)-i1 Rij X I 1)

Where: Rjj denotes the resistance of the branch at
position (i,j), li represents the current flowing
through the branch at position (i,j), and N denotes the
total number of nodes in the system.

3.2Voltage profiles

Voltage profile improvement in a distribution system
involves adjusting the system's operating conditions
to ensure that the voltages at various nodes or buses
are within acceptable limits. A common objective
function for voltage profile improvement is to
minimize the sum of squared voltage deviations as
per Equation 2:

Vinin = Z;rlzl(vj - Vdesired)2 )

Where V;j is the voltage at bus j and Vesired iS the
desired voltage.

3.3Type of DG

DG is an essential component of modern power
systems, providing a decentralized approach to
electricity generation. This project focuses on three
types of DG sources: PV with a power factor of 1,
WT with a power factor of 0.95, and a diesel
generator with a power factor of 0.93. This aims to
optimize the integration of these diverse DG sources
into the distribution system while taking into account
their distinct power factors.

The variation in power factors among the DG sources
poses challenges in maintaining a balanced and
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efficient power system. The project aims to analyze
the impact of this mismatch on the distribution
system's performance. Determining the optimal size
and location for each DG type, considering their
power factors, is a complex optimization problem. It
involves minimizing power losses, improving voltage
profiles, and ensuring reliable power supply.
Addressing power factor variation in DG sources is
crucial for achieving a balanced and sustainable
distribution system. The paper's findings contribute to
developing guidelines for efficiently integrating
diverse DG sources, paving the way for a resilient
and optimized power distribution infrastructure.

3.4Salp swarm algorithm (SSA)

Salps are members of the Salpidae family and have
bodies that are barrel-shaped and transparent,
resembling jellyfish in appearance. Like jellyfish,
salps pump water through their bodies to propel
themselves. While the study of salps is still in its early
stages, they exhibit fascinating behaviors, such as
swarming. In deep waters, salps form structures
known as salp chains. The reason behind their
collective behavior remains unclear, but it is
suggested that it enhances locomotion efficiency by
coordinating movement and foraging [19, 23].
Studying salps is challenging due to the difficulty of
accessing their natural habitat and the complexities of
maintaining them in laboratory conditions [19, 23].
The notion of the SSA is derived from the observed
coordinated movement and feeding patterns
demonstrated by salps in marine environments.
Marine invertebrates, known as salps, propel
themselves by contracting and relaxing their body,
resulting in the formation of a water jet. Moreover,
they exhibit a distinctive behavior characterized by
the formation of chains and the synchronized
swimming of groups. The SSA algorithm splits the
population into two groups: leaders, who guide the
swarm, and followers, who track the leaders either
directly or indirectly [24].

The population of salp chains is divided into two
distinct types: namely leaders and followers, in order
to construct a mathematical model. The leader stands
at the front of the chain, while the rest are considered
followers. As the name suggests, the leader guides the
group, while followers stay connected to each other
and the leader, either directly or indirectly. Salp
positions in swarm-based approaches are determined
within an n-dimensional search space, where n
represents the number of problem variables. A two-
dimensional matrix, X, stores the positions of all salps.
The primary goal of the swarm is to locate a food
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supply denoted as "F," which is presumed to be
located within the search space [24]. Equation 3 for
updating the leader's position is given as follows:

) pj+cl((ub,- — Iby)cy + Iby) £ 20

x. =
! {Ff—fl((ubj — Iby)cy + Iby) }% <0

In this formula, x]-1 denotes the position of the initial
salp (the leader) in the j™ dimension, whereas F;
indicates the location of the food source in that
dimension. The values ub; and lb; represent the upper
and lower limits for the jth dimension. Furthermore,
the variables c1, c2, and c3 are stochastic values
employed in the computation. Equation 3indicates that
the leader just adjusts its location in relation to the
food supply. Parameter c: is essential in SSA as it
facilitates the equilibrium between exploration and
exploitation. The definition is as shown in Equation 4:

G = 26_(4?1)2 (4)

©)

The parameters c; and c; are determined through a
random generation process that produces values
between 0 and 1. These numbers determine the
trajectory of the subsequent location in the jn
dimension, indicating whether it proceeds towards
positive or negative infinity, together with the
magnitude of the step size. The position of the
followers is determined using the following equation
derived from Newton's law of motion (Equation 5).

xji %at2 + vot, (5)

where i > 2, x! denotes the position of the it" follower
salp in the j™ dimension, t represents time, vy signifies
the starting velocity, and a indicates the ratio of final
velocity to beginning velocity. In optimization, time is
measured in iterations. The difference between each
iteration is equal to 1. Assuming ve = 0, Equation 6
can be represented as follows:

xf =2 (xf +x71) (6)

Where i > 2 and x}' denotes the position of ith follower

salp in jth dimension. The salp chains can be
simulated using Equation 3 and 6.

Figure 1 illustrates the flowchart of the SSA.
According to Figure 1, the SSA parameters must be
configured, encompassing the upper bound, lower
bound, and maximum iterations, as required. The first
salp population is thereafter generated with random
places and velocities.
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The quantity of variables is contingent upon the
amount of DG types, either ten (for a singular kind of
DG) or fifteen (for numerous types of DG). The
variables evaluated for different forms of DG are L1,
L2, L3, L4, L5, P1, P2, P3, P4, P5, pfl, pf2, pf3, pf4,
and pf5. L1 - L5 denotes the location of DG, P1 - P5
indicates DG sizing, and pfl - pf5 signifies three
categories of DG. Furthermore, the fitness function is
established to assess the performance of each salp.
Then, the quality of each solution is assessed based on
its ability to minimize power loss and improve the
voltage profile in the system.

This involves applying the solutions to a model of the
69-bus system and evaluating the resulting power loss
and voltage levels. The solution that has the best
fitness value so far has been identified. After that, the
parameter cl, which helps balance exploration and
exploitation, is updated. Furthermore, the position of
the leading salp (the one at the front of the chain),
representing the current best solution, is updated. This
typically involves movement towards the food source
(the optimal solution). Then, the positions of the
follower salps are updated based on their current
positions and the position of the leading salp. This
simulates the chain-like movement of salps in nature.
Next, the upper and lower bounds are checked to
ensure that the updated positions of the salps still fall
within the allowed variable bounds. Lastly, the
algorithm is terminated if the maximum number of
iterations has been reached. Otherwise, it returns to
step 2 for another round of fitness evaluation and
position updates.

3.5Evolutionary programming (EP)

To evaluate the effectiveness of SSA, its outcomes are
compared with those of a well-known technique, EP.
EP is chosen for its capability to explore complex
solution spaces and optimize DG placement and
sizing [25]. It is a stochastic optimization approach
similar to the genetic algorithm (GA), focusing on the
behavioral relationship between parents and offspring.
The number of variables and their range are set
similarly to SSA. During initialization, constraints are
applied to ensure that EP generates random numbers
meeting predefined criteria, such as a specific power
factor value and a minimum bus voltage of 0.90 p.u.
Offspring are generated through mutation applied to
random integers. Figure 2 presents the flowchart of
EP.
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Set S5A parameter

v

Generate the initial salp population

v

Calculate the fitness of each search agent
(salp) and determine the best agent (F)

v

Update c1 using Equation (4) €—

v

Update the position of leading agent using
Equation (3)

v

Update the position of the follower's search
agent using Equation (5)

v

Check the ub and Ib variables

lteration = max
lteration?

Figure 1 Flowchart of SSA

3.6 Test System

DG is generally implemented in a distribution
system. Consequently, the evaluated approaches were
tested using the IEEE 69-bus distribution test system,
comprising 69 buses, seven laterals, and 68 branches.
The system features a radial architecture and operates
at a voltage level of 12.66 kV. The total active and
reactive loads are 3.8 MW and 2.69 Muvar,
respectively. Under standard conditions, the system
loses 223.1 kW of active power. The voltage range is
0.95 to 1.05 per unit (p.u). Figure 3 illustrates the
IEEE-69-bus system.
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Generate random number for initial population

v

Calculate fitness for initial population

v

Mutate €—

v

Calculate fitness for off-spring

v

Combine parents and off-spring

v

Select best

Converge?

Figure 2 Flowchart of evolutionary programming
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Figure 3 IEEE 69-bus distribution test system
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4.Results

To evaluate the effectiveness of the proposed method
for optimizing the sizing of five DG units using SSA,
the results were divided into four cases and compared
with EP. The following four case studies were
considered:

Case 1: PV as DG with a power factor of 1

Case 2: WT as DG with a power factor of 0.95

Case 3: Diesel generator as DG with a power factor
of 0.93

Case 4: Multiple types of DGs

The proposed SSA algorithm was implemented in
MATLAB R2021b on a system equipped with an
Intel Core i5-5287U CPU running at 2.90 GHz. Both
SSA and EP simulations were conducted under
identical settings, including the maximum iteration
count and the number of search agents. The number
of iterations and search agents was set to 200 and 20,
respectively.

4.1Case 1: photovoltaic as DG

In this case study, a unity power factor is assigned to
the PV as DG. Table 1 presents the optimal DG
results obtained using SSA and compares them with
those from the EP method. As shown in Table 1, SSA
achieved the most favorable outcome, with a power
loss of 0.0642 megawatts (MW) and a minimum
voltage of 0.9899 p.u. In contrast, EP resulted in a
power loss of 0.0924 MW and a minimum voltage of
0.9527 p.u. Figure 4 illustrates the convergence curve
of SSA, which converged at the 140™ iteration.

In the Table 1, PDG (MW) and QDG megavolt-
amperes reactive (MVar) represent the real and
reactive power outputs of distributed generation (DG)
units, respectively. In this study, all QDG values are
zero, indicating that the DG units operate at a unity
power factor, meaning they generate only real power
(PDG) without contributing reactive power (QDG =
0). Table 1 presents a comparison of SSA and EP in
terms of DG placement and performance. The

Table 1 Result for SSA and EP for case 1

location column indicates the bus number in the IEEE
69-bus system where the DG unit is installed. The
PDG (MW) column provides the real power output at
each DG location, while the QDG (MVar) column
shows the reactive power output, which remains zero
due to the unity power factor. The power loss (MW)
column represents the total power loss in the system
after DG placement, and the Vmin (p.u.) column
records the minimum voltage observed in the system.
From the observations, SSA outperforms EP,
achieving a lower power loss (0.0642 MW) and a
higher minimum voltage (0.9899 p.u.) compared to
EP, which results in a power loss of 0.0924 MW and a
minimum voltage of 0.9527 p.u. Additionally, SSA
distributes DG units more effectively across different
locations, leading to improved system performance.
The results demonstrate the superiority of SSA over
EP in optimizing DG placement and sizing, thereby
reducing power losses and enhancing voltage stability
within the distribution network.

Objective space
0.13] T T . y

| 554 | |
w012 1

=]
=
—y

=

Best score obtained so fa
[=
2

=1
=

=
=
=

s 100 120 200
[teration
Figure 4 Convergence curve of SSA for case 1

Location PDG (MW) QDG (MVar) Power loss (MW) Vmin (p.u)
50 0.5917 0
18 0.4035 0

SSA 66 0.4013 0 0.0642 0.9899
64 0.3106 0
61 1.3593 0
12 0.1842 0
65 0.3244 0

EP 29 0.1419 0 0.0924 0.9527
11 0.7307 0
61 0.5060 0
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4.2Case 2: WT as DG

For Case 2, the analysis considers the placement of
five WT units, each operating at a power factor of
0.95. The findings for this case are summarized in
Table 2. Based on the tabulated data, the SSA
approach achieves the lowest power loss of 0.068
MW, along with a corresponding minimum voltage
of 0.979 p.u. The optimal DG placement is identified
at buses 2, 11, 50, 17, and 61. The best sizing values
for the DG units are 1.9368, 0.3035, 0.5618, 0.3149,

Table 2 Result for SSA and EP for case 2

and 1.3056 MW, respectively. The convergence
curve for Case 2, obtained using SSA, is illustrated in
Figure 5. The overall analysis indicates that SSA
outperforms EP in optimizing DG placement and
sizing. SSA achieves a lower power loss of 0.068
MW and a higher minimum voltage of 0.979 p.u.,
compared to EP, which results in 0.0794 MW power
loss and 0.964 p.u. minimum voltage. Additionally,
SSA distributes DG units more effectively, leading to
better system stability and efficiency.

Location PDG(MW) QDG (MVar) Power Loss (MW) Vmin (p.u)
2 1.9368 0.9380
11 0.3035 0.1470
SSA 50 0.5618 0.2721 0.068 0.9790
17 0.3149 0.1525
61 1.3056 0.6323
12 0.1842 0.0892
65 0.3244 0.1571
EP 29 0.1419 0.06087 0.0794 0.9640
11 0.7307 0.3539
61 0.5060 0.2451
Objective space 0.788, apd 0.6_95 MW. T_he convergence graph for
0.085 T T T Case 3 is depicted in Figure 6. For Case 3, SSA
‘ demonstrates superior performance compared to EP,
= achieving a lower power loss of 0.0665 MW and a
= higher minimum voltage of 0.9788 p.u., whereas EP
g 0.08 ‘ results in 0.0779 MW power loss and 0.9662 p.u.
o ' minimum voltage. SSA also provides a more
T | effective DG distribution, ensuring better system
el - .
s} ‘ efficiency and voltage stability.
% 0.075 1
o Lo 4.4Case 4: Multiple types of DGs
‘g:: ‘ In case 4, DGs are randomly picked from diverse
m categories. Table 4 summarizes the findings of case
N 4, which examines the ideal placement, type, and size
0.07 . —— of DG units, taking into account various DG types
50 100 150 200 (PV, WT, and Diesel). Two optimization strategies,
lteration the SSA and EP, were utilized for comparison

Figure 5 Convergence curve of SSA for case 2

4.3Case 3: diesel generator as DG

In Case 3, the diesel generator is designated as DG.
Typically, the power factor of a diesel generator falls
between the range of 0.90 to 0.95 [26]. Thus, this
study examines a diesel generator with a power factor
of 0.93 on average. Table 3 presents the ideal
parameters achieved using the proposed method for
the diesel generator. The system has a minimal power
loss of 0.0665 kW and a minimum voltage of 0.9788
p.u. The most suitable position for DG is determined
to be at buses 16, 49, 63, 61, and 47 with
corresponding DG size values of 0.382, 0.775, 0.437,
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analysis. The primary criteria evaluated are the
reduction of power loss and the preservation of
voltage levels within acceptable thresholds. The
optimal DG locations discovered by SSA were buses
23, 48, 33, and 61. The relative DG sizes were 0.0882
MW, 0.983 MW, 0.0218 MW, and 1.715 MW. SSA
designated WT for buses 23 and 61, whereas buses
48 and 33 were assigned PV systems. The cumulative
power loss recorded was 0.0677 MW. The lowest
voltage (Vmin) was 0.9812 p.u., signifying the
system's voltage stability. The optimal DG locations
indicated by EP were buses 39, 62, 44, 58, and 13.
The relative DG sizes were 0.4252 MW, 1.4289 MW,
0.2604 MW, 0.1817 MW, and 0.5489 MW. EP
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designated WT at buses 39 and 58, whilst PV
systems were assigned to buses 62, 44, and 13. The

Table 3 Result of SSA and EP for Case 3

cumulative power loss recorded was 0.075 MW. The
minimum voltage was 0.9789 p.u.

Location PDG(MW) QDG(MVar) Power loss (MW) Vmin (p.u)
16 0.3817 0.1849
49 0.7746 0.3751
SSA 63 0.4374 0.2119 0.0665 0.9788
61 0.7879 0.3816
47 0.6954 0.3368
12 0.1842 0.0726
65 0.3244 0.128
EP 29 0.1419 0.0558 0.0779 0.9662
11 0.7307 0.2886
61 0.506 0.1998
Table 4 Result of SSA and EP for Case 4
Location PDG(MW) QDG(MVar) DG Type Power Loss Vmin (p.u)
(MW)
23 0.0882 0.0268 Wind
48 0.983 0 PV
SSA 33 0.0218 0 PV 0.0677 0.9812
61 1.715 0.1189 Wind
22 0.2683 0 PV
39 0.4252 0.1111 Wind
62 1.4289 0 PV
EP 44 0.2604 0 PV 0.075 0.9789
58 0.1817 0.979 Wind
13 0.5489 0 PV
Objective space approximately 0.13, showing a steep drop in the first
0.11 50 iterations to around 0.08, indicating rapid
exploration and identification of promising solutions
B 0.105 early in the optimization process. Beyond this point,
o 04 the rate of improvement slows down, with more
.‘; i = incremental changes observed until the algorithm
£ 0.095 l converges at a best score of about 0.07 after around
g \ 140 iterations. This convergence suggests that the
o (Wi . SSA has effectively fine-tuned the placement and
g 0.085 } sizing of PV systems, achieving minimal power loss.
3 ‘ The results confirm that the SSA is a suitable and
» robust approach for tackling the complex optimization
o 0.08 — . . : .
m . problem of integrating PV systems into power grids,
0.075 I_ ensuring efficient energy distribution with minimized
’ 1 losses. From the results tabulated in Table 2, it can be
50 100 150 200 seen that the optimal placement and sizing of DG for
Iteration case 2 determined via SSA outperforms the findings

Figure 6 Convergence curve of SSA for case 3

5.Discussion

Based on the results presented in Table 1, it can be
concluded that SSA is a superior method compared to
EP for solving optimal location and sizing of PV.
Figure 4 demonstrates the effectiveness of the
algorithm in Significantly reducing power loss over
200 iterations. Initially, the best score starts at
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provided by EP in terms of reducing power loss and
improving voltage. The convergence graph for Case 2
in Figure 5, which optimizes the location and sizing
of WT using the SSA, shows a steady improvement in
minimizing power loss. The score drops quickly from
around 0.085 to 0.075 in the first 50 iterations,
indicating the algorithm's effectiveness in finding
good solutions early. The score continues to improve
gradually, stabilizing at around 0.07 after 100
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iterations. When compared to the optimization for PV
systems, the WT results show a similar convergence
trend, with both cases reaching a final score of about
0.07. The SSA algorithm reaches convergence after
154 iterations. This consistency suggests that the SSA
is equally effective in optimizing both WT and PV
systems, achieving similar levels of power loss
reduction in both scenarios. In Case 3, the power loss
achieved by the use of SSA is considerably lower
compared to EP, resulting in a power loss of 0.0779
MW as indicated in Table 3. In addition, the SSA also
achieves a greater voltage enhancement, with a
minimum voltage of 0.9788 per unit, as compared to
EP. According to the convergence curve depicted in
Figure 7, the SSA algorithm achieved convergence
after 95 iterations. The convergence graph for Case 3,
shows a steady reduction in power loss, starting from
0.11 and dropping to around 0.075 after 100
iterations. This mirrors the trend seen in the PV and
WT cases, where the SSA effectively identifies
optimal solutions early on and gradually refines them.
Despite initially having a slightly higher power loss,
all three cases converge to a similar final value
between 0.07 and 0.075 MW, demonstrating the
robustness and effectiveness of SSA across different
DG types in minimizing power loss and improving
system performance.

The findings from Case 4, concerning the ideal
placement, type, and size of DG units, provide
significant insights into the efficacy of various
optimization methodologies. The two optimization
strategies employed (SSA and EP) were evaluated for
their efficacy in minimizing power losses and
sustaining  voltage levels within  permissible
thresholds. Both SSA and EP designated distinct
groups of buses for DG installation. The SSA-based
approach proposed placement at buses 23, 48, 33, and
61, whereas EP's optimal solution focused on buses
39, 62, 44, 58, and 13. These disparities illustrate the
intrinsic characteristics of the optimization strategies.
SSA often converges on solutions that emphasize the
optimal combination of DG types and placements to
minimize power loss, while EP investigates a wider
array of alternatives, possibly leading to more diverse
DG placement solutions.
The DG type assignments varied across the two
methodologies. The SSA allocated WT to buses 23
and 61; however, the EP positioned WT at buses 39
and 58. This mismatch highlights the significance of
the optimization algorithm in identifying the optimal
sites for each DG type, predicated on power loss
mitigation and voltage stability. The SSA technique
allocated PV systems to buses 48 and 33, but the EP
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method positioned PV systems at buses 62, 44, and
13. These disparities indicate that EP may favor a
more equitable distribution of DG installations,
whereas SSA seeks to maximize locations that yield
the greatest enhancement in system performance. The
dimensions of the DG units deployed in the network
differed between the two optimization approaches.
The DG sizes for SSA were comparatively smaller,
with a maximum capacity of 1.715 MW at bus 61,
while the EP results indicated a greater cumulative
power loss associated with bigger DG sizes at
multiple buses. The total power loss using SSA was
measured at 0.0677 MW, while EP recorded a slightly
higher power loss of 0.075 MW. This difference
suggests that SSA more effectively reduces power
loss through optimal DG placement and sizing. The
lower power loss achieved by SSA can be attributed
to its ability to strategically identify locations with the
highest potential for loss reduction, utilizing a targeted
optimization approach.

Both optimization procedures yielded voltage levels
within acceptable parameters, with SSA attaining a
Vmin of 0.9812 p.u. and EP achieving a Vmin of
0.9789 p.u. The voltage levels are around the nominal
voltage of 1.0 p.u., indicating that both solutions
preserved sufficient voltage stability. The minor
discrepancy in voltage stability between the two
strategies indicates that the SSA-based solution may
have more efficiently reconciled power loss reduction
with voltage regulation. Both technologies effectively
maintain voltage stability throughout the system,
which is essential for dependable operation in
practical power systems. The comparison between
SSA and EP highlights the strengths and limitations of
each algorithm, providing a clear understanding of
their respective merits and drawbacks. SSA exhibited
enhanced efficacy in power loss mitigation, with the
lowest aggregate power loss (0.0677 MW) and a
superior minimum voltage (0.9812 p.u.). This
indicates that SSA may be more effective in
identifying the ideal arrangement for minimizing
power loss and regulating voltage. Conversely, EP
provided a more varied array of solutions, featuring
distinct DG locations and sizes, suggesting its
capacity to investigate a wider search field.
Nevertheless, EP's elevated power loss (0.075 MW)
and marginally reduced voltage stability indicate a
greater susceptibility to suboptimal solutions relative
to SSA in this scenario.
In practical applications, the outcomes of both
optimization algorithms yield valuable insights for the
best placement of DG units in distribution networks.
The findings demonstrate that both SSA and EP may
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efficiently diminish power losses and uphold voltage
stability; however, SSA may provide a more optimum
solution with reduced losses and superior voltage
regulation. The various DG placements and types
designated by each approach highlight the
significance of choosing the appropriate optimization
method according to the unique objectives and
limitations of the power system. Furthermore,
although  both  methodologies employed a
straightforward distribution test system, subsequent
research may explore the application of these methods
to more intricate and realistic networks to assess their
scalability and performance across varied operational
situations.

In summary, the findings indicate that SSA is a more
effective approach for reducing power loss and
ensuring voltage stability in the analyzed network,
although EP offers a wider array of potential options,
which may be advantageous in more intricate systems
or varying operational conditions.

Figure 7 and Table 5 demonstrate the comparative
efficacy of the SSA and EP in reducing power loss
(Ploss) across four scenarios: PV, WT, diesel

generator, and multiple types of DG systems. The
current system has a power loss of 0.2246 MW,
indicating its inefficiency. Optimization yielded
substantial reductions in all instances. SSA
demonstrates exceptional performance, achieving
power loss reductions of 71.42%, 69.72%, 70.39%,
and 69.87% in Cases 1, 2, 3, and 4, respectively,
bringing the power loss down to 0.0642 MW, 0.068
MW, 0.0665 MW, and 0.0677 MW. In contrast, EP
also enhances performance but with slightly lower
reductions, achieving 58.86%, 64.63%, 65.30%, and
66.61% in the corresponding cases. Figure 7
graphically supports this trend, showing that SSA
consistently outperforms EP across all DG systems
(PV, WT, diesel generator, and multiple DG types) by
yielding the lowest power loss values. Although EP
improves the existing system, its power loss reduction
is marginally lower than that of SSA. The findings
confirm that SSA is a superior optimization technique,
delivering greater percentage reductions in power
loss, significant energy savings, improved system
efficiency, and enhanced reliability—establishing it as
an optimal method for loss reduction in modern power
systems.
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Figure 7 Comparison of power loss for all cases

Table 5 Percentage of power loss reduction for all cases

Cases ltem SSA EP
Existing Ploss (MW) 0.2246 MW

Case 1 % Ploss reduction 71.42% 58.86%
Case 2 % Ploss reduction 69.72% 64.63%
Case 3 % Ploss reduction 70.39% 65.30%
Case 4 % Ploss reduction 69.87% 66.61%

Figure 8 illustrates the minimum voltage levels
attained across several DG scenarios within a grid
system. The scenarios examined encompass the
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current system, a system with PV integration, a
system with WT integration, a system with diesel
generator integration, and a system incorporating a
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mixture of these (multiple DG types). The minimum
voltage is a crucial characteristic that directly affects
the stability and reliability of the grid. The current
system demonstrates the lowest minimum voltage,
suggesting possible voltage stability concerns. This
indicates that the current infrastructure may be
insufficient to accommodate the rising electricity
demand. The incorporation of solar PV results in a
marginal enhancement of the minimum voltage
relative to the current system. This is probably
attributable to the decentralized structure of PV
generation, which mitigates voltage decreases at the
load locations. Similar to PV integration, the
incorporation of WT also results in a slight
improvement in the minimum voltage. This is
ascribed to the augmented power generation
capability and the potential for reactive power
assistance from WT. The incorporation of diesel
generators results in a notable enhancement in the
minimum voltage. This is mainly attributable to the
synchronous characteristics of diesel generators,
enabling them to deliver reactive power support and
uphold voltage stability. The multiple DG types
scenario, which integrates PV, WT, and diesel
generation, achieves the highest minimum voltage
values. This suggests that a varied combination of
generation sources can significantly improve voltage
stability and overall system reliability. Figure 8
highlights the need for strategic DG planning and
integration for enhancing voltage stability and
reliability in smart grids. The selection of DG
technology, along with its ideal placement and
dimensions, is essential for attaining these goals. The
results also illustrate the potential advantages of DG
integration for improving voltage stability and
reliability in smart grids. Through meticulous
planning and the integration of DG resources, it is
feasible to establish more resilient and sustainable
power systems.
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Figure 8 Comparison of minimum voltage for all
cases

395

Figure 9 illustrates the voltage profiles of a power
supply across several conditions. For the initial load
flow analysis, the voltage profile of the system is
assessed without any DG implemented. It probably
indicates voltage reductions across the system,
particularly near the end of the feeder (higher bus
numbers), which is customary due to line impedances
and load requirements. The voltage profile after the
integration of multiple types of DG via the SSA for
optimization demonstrates considerable enhancement
in voltage levels relative to the initial load flow
analysis. The voltage profile is more uniform and
nearer to the nominal voltage (1.0 p.u.), signifying
improved voltage regulation. The voltage profile
following DG integration via the EP method
resembles that of the SSA, demonstrating a
significant enhancement in voltage levels relative to
the initial load flow. The profile is predominantly
level and sustains a voltage close to the nominal
value. The incorporation of DG via both SSA and EP
positively influences the voltage profile. The voltage
levels have markedly enhanced, particularly in
regions with elevated load demand (near the terminus
of the feeder). This illustrates the efficacy of DG in
enhancing voltage regulation and mitigating voltage
dips. Both SSA and EP algorithms demonstrate
efficacy in optimizing the placement and sizing of
DG for voltage enhancement. The voltage profiles
derived from both algorithms are analogous,
indicating that both optimization methods can yield
comparable outcomes. The higher voltage profiles
signify improved voltage stability within the system.
Ensuring voltage remains within acceptable
parameters is essential for the dependable functioning
of electrical apparatus and the general stability of the
power system.
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Limitations

This study has several limitations. DG is represented
as a negative load, implying that the generated power
directly offsets the network's demand. The power
factor of the DG is determined by the type of
generator used, without accounting for potential
fluctuations under varying operational conditions.
Additionally, the simulation is confined to steady-
state conditions, excluding transient events and
dynamic system behavior during disturbances or
faults. Furthermore, the study utilizes the widely
adopted IEEE 69-bus test system, considering only a
single load variation. A complete list of abbreviations
is listed in Appendix .

6.Conclusion and future work

The SSA is a highly efficient method for optimizing
DG selection in distribution systems. By simulating
salps' foraging behavior, SSA effectively determines
the optimal locations, sizes, and types of DG. This
study analyzed three types of DG—PV, WT, and
diesel—within the IEEE 69-bus system. The results
demonstrate that SSA outperforms EP in reducing
power loss and improving voltage profiles,
highlighting its  effectiveness in  enhancing
distribution system performance and efficiency. This
underscores SSA’s potential for sustainable energy
integration and management.

Based on the study’s findings, practitioners and
researchers are encouraged to adopt SSA for DG
optimization in distribution systems. SSA’s ability to
efficiently identify optimal DG placement, sizing,
and selection offers significant promise for
improving system performance. Given SSA’s
superior performance over EP, future research could
explore its applicability in larger-scale distribution
networks and diverse operating conditions.
Additionally, refining and enhancing SSA could
further enhance its potential for sustainable energy
integration and management. Economic feasibility
assessments of different DG integration scenarios are
essential to identify the most cost-effective approach,
while environmental impact evaluations are crucial to
ensure a sustainable and eco-friendly microgrid.
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Appendix |

S.No.  Abbreviation  Description

1 DG Distributed Generation

2 EP Evolutionary Programming

3 GA Genetic Algorithm

4 MVar megavolt-Amperes Reactive

5 PSO Particle Swarm Optimization

6 PV Photovoltaic

7 PV-TEG Photovoltaic-Thermoelectric
Generator

8 SSA Salp Swarm Algorithm

9 WT Wind Turbine




