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1.Introduction 
River water is an essential natural resource that is a 

vital component affecting the global carbon cycle and 

climate change [1]. Thus, river water is an essential 

component of the environment, which has a vital role 

in the survival of humans, plants, animals, as well as 

economic development. Generally, river water is 

utilized for multiple purposes such as agriculture, 

drinking, hydropower projects, etc. Accordingly, it is 

important to take care of the rivers and identify the 

areas of water pollution in the river as well. However, 

extracting rivers from satellite imagery remains a 

difficult problem because rivers have complex shapes 

with diverse branches and directions [2]. Synthetic 

Aperture Radar (SAR) images have been used 

growingly for water monitoring, due to their ability to 

register images independently of weather conditions 

[3]. Many algorithms for extracting water using SAR 

images rely on optimum thresholding techniques 

[4─6].   
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However, these simple techniques generated many 

false classification results, particularly when the 

bodies of water are small. For example, five different 

thresholding methods applied to three satellite images 

to determine the most effective technique for image 

segmentation was presented in [7]. These threshold 

methods include the P-tile method, Histogram 

Dependent Technique (HDT), the Mean method, and 

the Edge Maximization Technique (EMT). Al-Amri 

and Kalyankar [7] found that HDT and EMT 

methods yielded the best results. HDT technique is 

histogram-based, where the histogram depends on the 

value of the threshold. The allocated threshold value 

separates the area of the image where the feature of 

interest blends into the background. EMT method is 

used when there is a distinct contrast in illumination 

between the feature of interest and the background. 

Gong et al. [8] proposed an automatic adaptive 

threshold segmentation approach based on the fuzzy 

c-means algorithm and the Otsu threshold method to 

extract tidal creeks.  

 

Sakurai-Amano et al. [9] presented a fully automated 

method to extract the location of narrow rivers in 

tropical rain forests-based images collected from 

JERS-1 SAR images. Their method was examined by 
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comparing the outcomes from optical JERS-1 VNIR 

in the Amazon basin and the Congo basin. 

Commonly, images obtained via remote sensing 

suffer from poor contrast and low resolution [10]. 

The importance of overcoming these challenges and 

successfully processing satellite images for research 

is relevant to fields such as astronomy, agriculture, 

and environmental industries and water management 

[11].  

 

As discussed above, water management research has 

particularly gained momentum as environmental bid, 

including growing overpopulation and pollution 

surrounding water resources are on the rise. 

Protecting natural water supplies has become a top 

priority as water is an important life-sustaining 

resource [12]. In such a context, the detection of 

water bodies and extracting them from satellite 

imagery is beneficial operations for many designing 

and evolution activities such as coastline mapping, 

river erosion mapping in addition to water resource 

management. Scientific research in the field of water 

resources management and planning worldwide has 

explored various satellite data to understand the 

spatial, spectral, and temporal characteristics to 

produce maps of land with a special interest in water 

bodies [13]. Detecting water resources was not only 

limited to the use of satellite remote sensing images, 

but an Unmanned Aerial Vehicle (UAV) was utilized 

for the same purpose [14, 15]. For example, 

Randazzo et al. [16] proposed an image processing 

framework for coastal extraction as well as shallow 

water depth on the GeoEye-1 satellite image and 

mosaic image collected by a drone on the coast of 

San Vito Lo Capo. Several researchers have 

endeavored to analyze river water using machine 

learning tools and high-resolution satellite images. In 

this regard, we review some popular works of water 

body extraction during the period from 2015 to 2020.  

 

There are several published works of various 

methods involving the segmentation of features in 

satellite images. Although not much has been 

explored with extracting rivers, in particular, several 

objects have been successfully detected and 

extracted. Dhanachandra et al. [17] successfully 

extracted rivers from satellite images and the two 

methods were explored. The first included the 

extraction of rivers using a color histogram 

technique, and hill-climbing algorithm and k-means 

clustering method. The second one included the use 

of the thresholding of a grayscale image and 

morphological erosion. The results achieved were 

reasonable based on both methods. Syrris et al. [18] 

discussed the importance of image enhancement and 

contrast adjustment when extracting features from 

low-resolution satellite data. The authors built a case 

study that encompasses the use of enhancement 

techniques such as linear and decorrelation 

stretching. They showed that low-resolution satellite 

imagery could be improved or “corrected” and thus 

more effective when extracting features. 

 

Jiang et al. [19] adopted a multilayer Perceptron-

Artificial Neural Network (ANN) to determine the 

surface water in Landsat 8 satellite imagery. A study 

presented in [20] used ANN and a threshold 

technique with a set of mathematical morphology 

operations to extract lakes from satellite imagery. A 

segmentation approach based on Convolutional 

Neural Networks (CNN) was used for extracting 

water bodies from remote sensing images with high 

resolution that were gathered from Google earth 

imagery [21]. A deep learning approach was 

developed in [22] to interactively extract water 

bodies, farmlands, forests, and other nonartificial 

regions from satellite images with high resolution. 

Their approach was performed on two datasets with 

different object types and varied, complicated scenes 

[22].  

 

Meng et al. [23] presented an automated Lake and 

Reservoir Extraction Process (LREP). This method 

implemented a Modified Two-Mode (MTM) method 

for extracting water from partial images using 154 

Gaofen-2 images covering Zigong, Xianning, and 

Liaoyuan cities. A study given in [24] reported an 

enhanced deep convolutional encoder-decoder 

network to extract body water from remote sensing 

images through the application of superpixel 

segmentation and conditional random fields. 

 

Rishikeshan and Ramesh [25] presented a flexible 

Mathematical Morphological (MM) driven approach 

for extracting water bodies from much different 

satellite imagery of different spatial resolution. An 

operational automated water extraction method was 

used for the extraction of water bodies for a large 

number of lakes in China using Landsat 8 land 

images. This method does not demand the 

determination of histogram peaks, but instead 

searches for the minimum values in the threshold 

range to arrive at an automated dynamic threshold 

[4].  

 

Moreover, a variety of image processing and machine 

learning methods have been adopted for the detection 

of pollution in river water. Analysis of different 
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satellite sensors, image processing methods and many 

classification methods to classify river water was 

provided in [26]. Navarro et al. [27] presented an 

unsupervised approach using the local Moran index 

of spatial association combined with morphological 

processes for extracting inland water bodies. Dereli 

and Tercan [28] developed a method to detect 

shoreline changes of Lake Salda in Turkey from the 

year 1975 to the year 2019. A segmentation approach 

using the stepwise thresholding technique was drawn 

to track and map the change in the extent of surface 

water using SAR images in Ontario, Canada from 

2008 to 2016 [5].  

 

A method combining Google Earth Engine (GEE) 

and a multiscale CNN was presented in [29] for 

detecting water from Landsat images. An approach 

that combined global salience features, multi-feature 

fusion method based on principal component 

analysis, and an Active Contour Model (ACM) to 

extract rivers from SAR imagery was proposed in 

[30]. In [31], the authors presented an assessment to 

the accuracy of a new automated water detection 

method by integrating the automatic water extraction 

index, GEE platform, and Landsat 8 OLI data 

throughout the years 2014, 2015, 2016, 2017 and 

2018 to study the case of New Zealand. The proposed 

image fusion method was successfully utilized to test 

the real changes of the lakes at a more accurate scale.  

 

In light of the importance of automatic extraction of 

water bodies from satellite images, the main goal of 

this work is to present an automatic method to extract 

the water body from Landsat satellite images based 

on a method consisting of several image processing 

stages. These stages include enhancement, 

segmentation, and clutter removal of images. We 

used several images collected from the Connecticut 

River in the state of Connecticut. The images were 

acquired through Google Earth at an altitude between 

14,000 and 15,000 meters. The paper is structured as 

follows. In Section II, we provide a discussion of our 

proposed methodology. Section III describes the 

experimental setup and the developed results. Finally, 

we provide our conclusions and future work. 

 

2.Proposed methodology  
Our proposed method for extracting the water body 

from a Landsat satellite imagery is based on several 

steps. They include enhancement, binarization, 

morphological operation, and clutter removal. Image 

enhancement and pre-processing techniques include 

histogram equalization and de-correlation stretching. 

Image enhancement is often thought of as only 

visually improving an image. However, by improving 

the contrast and overall quality of the raw image 

before the segmentation process, one will potentially 

yield better results [18]. Thresholding is also an 

essential step to image segmentation as it aids in the 

separation of objects in the foreground from the 

background. Converting an image to grayscale, then 

to binary by selecting a threshold value, is key to 

foreground object and feature detection [32].  

 

Segmentation plays a critical role in providing the 

ability to analyze and gain information from an 

image. This process involves the separating and 

grouping of pixels based on similar characteristics 

allowing features to have higher contrast and to 

become distinguishable. The process and technique 

used to achieve segmentation largely depend on the 

task at hand [32]. Image segmentation can be 

performed on either grayscale or color images, 

making it useful in several image processing 

applications. A survey of global thresholding 

methods for mapping, open water bodies was 

presented in [33, 34]. A recent study in the Tianjin 

Binhai New Area was implemented to extract the 

surface water using a Modified Normalized 

Difference Water Index (MNDWI) method to extract 

surface water and detect its change [35]. The finding 

claims that the environment evaluation method shows 

that the water quality of the Haihe River section was 

poor. It was suggested to strengthen the 

environmental protection protocol in this area. 

 

A. Enhancement via decorrelation 

Color enhancing is an essential process for object 

detection in satellite images. To show multispectral 

images that fall outside the range of the human 

spectrum, an appropriate transformation must be 

rendered for representing the data in color. Therefore, 

need to use an appropriate method to enhance the 

image for better detection of water resources 

locations such as rivers. 

 

Decorrelation stretching is one method that can be 

used to enhance the color domains of an image with 

considerable band-to-band correlation. The inflated 

colors expand the visual understanding of the image 

and make feature perception clearer. In the past, the 

decorrelation stretching was explored by many 

researchers as a successful tool to handle 

multispectral imaging that can space channels in the 

spectral domain, and hence, achieve exceptionally 

high inter-channel correlation [36, 37]. In our 

proposed method we plan to use the decorrelation 

method.  
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The decorrelation stretching process is used to 

enhance (i.e., stretch) the color differences in satellite 

images. The method depends on removing the inter-

channel correlation obtained in the image pixels; this 

is why we call the process "decorrelation stretch". 

The decorrelation stretch is a procedure that enhances 

the three color bands independently from each other. 

The RGB space represents only one of the possible 

bases for the color space. If we think of R, B, G, as 

X, Y, Z for a normal Cartesian space, then every 

point in the color space has an R coordinate, a G 

coordinates, and a B coordinate. Moving along R 

increases "redness" from a very dark red to a very 

light red, and similarly, for G and B. 

  

The decorrelation stretching algorithm normalizes 

each band and then rotates the bands into eigenspace. 

The algorithm finds the rotated orthogonal coordinate 

system along which the colors in the images are 

maximally extended and then stretches the colors 

along with those coordinates to the maximal extent. 

In this step, the bands lose their relationship (or 

correlation) to each other. Then, the bands are rotated 

back to the original RGB space, where they retain 

their normalized and decorrelated values [38]. The 

net impact of the process is to get an output image in 

which the pixels are well distributed between all 

possible colors while maintaining the relative 

meaning of hue, saturation and intensity components 

of the input image [36]. Figure 1 shows the block 

diagram of the proposed methodology. In Figure 2, 

we show a satellite image utilized by decorrelation 

stretching along with the histogram of both images. 

To show how the band of color stretched, we have 

shown the color scatter plot before and after 

stretching in Figure 3. 

 

 
Figure 1 Block diagram of proposed methodology 

 

 

 
Figure 2 (a) Original satellite image (b) decorrelated image 
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Figure 3 Color scatterplot before (a) and after (b) decorrelation 

 

B. Segmentation 

Image segmentation is the process of splitting an 

image of interest into several regions or categories. 

Each region is corresponding to different objects. 

Every pixel in an image will be classified based on a 

pre-defined criterion. In the case of grayscale images, 

the goal is to identify the similar grayscale pixels and 

recognize the relationship of these pixels as an object. 

Objects can later be recognized based on a set of 

selected features extracted from clustered objects.  

 

Image segmentation plays a key role in many image 

processing tasks throughout partitioning an image 

into homogenous areas or objects that share similar 

properties. The extracted regions of interest of a 

particular image become more meaningful and can be 

utilized for further analysis and processing [39]. 

There exist well-known segmentation techniques 

reported in the literature such as: 

• Threshold-based Segmentation  

• Edge-based Segmentation  

• Region-based Segmentation  

• Clustering-based Segmentation  

 

Threshold-based segmentation: The threshold-based 

segmentation method is modest and efficient in 

segmenting grayscale images that can fulfill the 

segmentation task by comparing the intensity of the 

image understudy to one or more intensity thresholds 

[40]. Threshold-based methods are categorized into 

global and local thresholding techniques [41]. 

 

 Global thresholding is the best option for dividing 

the objects and backgrounds if an image has 

objects with homogeneous intensity or the contrast 

between the objects and the background is too 

large. Choosing the proper threshold becomes hard 

when the contrast of an image is low.  

 On the other hand, local thresholding can be 

identified by estimating a threshold value for 

different regions from the intensity histogram. The 

threshold values of local thresholding can be 

generally estimated using local statistical 

properties such as the mean intensity value [42]. 

 

An image described as f with grayscale levels from 0 

to 255 consists of a light object and a dark 

background, with pixels distributed in two dominant 

modes, where        represents the pixel intensity at 

coordinates      . A single threshold value, T, is 

used to group the pixels of   into black (i.e., with a 

value of 0) and white (i.e, with a value of 255), which 

results in extracting the region of interest within the 

image for segmentation. An increase in the threshold 

values gives the increased number of intensity values 

in the segmented image. For the application of 

thresholding-based segmentation technique, it is 

necessary to apply the correct threshold values to 

achieve appropriate segmentation results. 

Specifically, the pixels below threshold   will be 

categorized as class    with the rest of pixels as class 

   as shown in Equation 1, where these two classes 

differ from each other. 
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      (1) 

 

In many cases, the threshold value of t is selected 

manually by the user. It is more likely a trial and 

error process to explore various objects in an image. 

The best value of t can help to identify the objects of 

interest. Histogram Thresholding algorithm can be 

described briefly as shown in Algorithm 1. 

 

Algorithm 1: Histogram thresholding. 

Result: Segmented image 

1. Divide each input image into two halves (horizontal, 

vertical); 

2. Calculate the histogram for both parts of the image 

under consideration; 

3. Compute the difference between the histograms (two 

halves); 

4. Calculate the threshold value T from the difference 

value in the previous step; 

5. Segment the image as per 

f(x,y) ≥ T; Background 

f(x,y) ≤ T; Object 

 

C. Clutter removal 

Small unwanted objects in the image are removed by 

using an area opening morphological operator. Per 

the image characteristics, a maximum pixel amount 

to be imputed. As a result, all objects having fewer 

than the selected number of pixels will be removed 

from the image. 

 

3.Experimental results 

In this section, we present the results of our proposed 

methodology, which consists of image enhancement, 

segmentation, and clutter removal, with the final 

output, which is the segmented river. 

A. Data set 

The dataset used in this research consisted of images 

collected from the Connecticut River in the state of 

Connecticut. The images were acquired by Google 

Earth at an altitude between 14,000 and 15,000 

meters. The results of the proposed segmentation 

method for a selected image are shown in Figure 4. 

B. Analysis of results 

Figure 4 (a) shows the original satellite image that is 

targeted to a segment based on the proposed image 

segmentation approach. In the first phase of the 

image segmentation problem is the application of the 

enhancement phase. In this phase, a decorrelation and 

stretch algorithm is applied to the original satellite 

image in Figure 4 (a). The output of this 

enhancement phase is a decorrelated RGB band with 

a contrast stretch as exhibited in Figure 4 (b). The 

next phase of the image segmentation problem is to 

segment the image regions. In this phase, first, the 

image is converted to binary, and then a global 

thresholding technique with a thresholding level, α, 

of an arbitrary value between 0 and 1 is applied to the 

enhanced image. The result of the thresholding 

segmentation phase is presented in Figure 4 (c).  

 

In the final phase of the image segmentation method, 

the clutter removal procedure is applied. In this 

phase, clutter with specific sizes β is removed based 

on the characteristics of the image. In the case 

presented in Figure 4, β took values up to 1000 

pixels. Finally, the location and outlines of the 

detected River are shown in Figure 4 (d). The 

proposed image segmentation method was also 

applied to several different river images with various 

degrees of complexity and in various shapes. A set of 

examples of segmented satellite images is shown in 

Figures 5 to Figure 8.  

 

The original images in Figures 5-8 show normal 

variation with a moderately complex background. 

Each image in Figures 5-8 (b) - (d) shows a separate 

phase of the proposed image segmentation method, 

with the output of each case showing a reasonable 

level of accuracy in the phase processed. It can be 

concluded that the whole proposed image 

segmentation approach is sensible and that each 

phase of this approach is appropriate to assist the 

proposed approach to detect the outlines of the river 

in the target image. The only limitation of this 

approach is we could not generalize the set of 

parameters that can be used for all image 

segmentation and background removal since the 

images where collected from various resources and 

under different environmental conditions. The lack of 

accessibility of a database of images collected from a 

unified sensor in a limitation that needs to be 

investigated. 
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Figure 4 Image segmentation for satellite image 1: (a) original image (b) decorrelated image (c) segmented image 

(d) outlines of the original image 

 

 
Figure 5 Image segmentation for satellite image 2: (a) original image (b) decorrelated image (c) segmented image 

(d) outlines of the original image 

 

 
Figure 6 Image segmentation for satellite image 3: (a) original image (b) decorrelated image (c) segmented image 

(d) outlines of the original image 

 

 
Figure 7 Image segmentation for satellite image 4: (a) original image (b) decorrelated image (c) segmented image 

(d) outlines of the original image 

 

 
Figure 8 (a) Original satellite image (b) decorrelated image (c) segmented image (d) outlines of the original image 
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4.Conclusion and future work  
In this paper, we presented our initial idea using 

various color models based on image processing 

methodology to detect rivers from satellite images. 

The methodology was tested on a set of images 

collected for the Connecticut River in the state of 

Connecticut taken at a height of 14,000-15,000 

meters. The decorrelation process adopted to enhance 

the color in the images helped to enhance the quality 

of the images and make it easier to segment the 

images. A different level of segmentation was 

adopted for better detection of rivers. This research 

could serve as a groundwork for future research on 

developing water resource management, which is 

crucial for future generations. We suggest that this 

methodology could be enhanced by using meta-

heuristic search techniques to better tune the 

segmentation filters to segment the rivers. Also, in 

further work, we will focus on the following trends: a 

more powerful segmentation approach to obtaining 

more accurate segments of the rivers, an 

enhancement model that is sufficiently adequate for 

the images, and a mechanism for extracting artificial 

and non-artificial objects of the rivers. These future 

directions can enhance the performance level of the 

proposed image segmentation method and promote 

work adequacy. 
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