
ACCENTS Transactions on Information Security, Vol 1(1)

ISSN (Online): 2455-7196

7

An overview of cryptographic algorithms and security challenges in big data

Anurag Sarkar
*

Department of Computer Science, St. Xavier‟s College, Kolkata, India.

©2016 ACCENTS

1.Introduction
Today, with tens of millions of people

communicating online and conducting commercial

transactions, information and data security is of the

utmost importance. Such security is achieved through

the implementation of different types of

cryptographic algorithms. The word „Cryptography‟

may be defined in several ways. It is often defined as

the art (or science) of writing in secret code.

Cryptography is not a modern concept and has been

used for several millennia to communicate secret

information. However, the need for cryptography has

never been more than in the digital age in which we

now live. With the growing reliance on the Internet

over the past few decades, several different

cryptographic techniques and algorithms have been

developed depending for different situations and

applications. These cryptographic algorithms usually

have to satisfy certain key principles of security in

order to be effective and efficient. The following are

these principles which should be at the foundation of

most cryptographic systems:

A. Authentication

This is used to correctly identify the sender and

intended recipient of a message and provides a

guarantee to the recipient that the message has indeed

come from the correct sender. It prevents any

unauthorized entity or attacker from pretending to be

the sender or the recipient. Such a breach of security

is called fabrication or masquerading.

*Author for correspondence

B. Confidentiality

This specifies that only the sender and the intended

recipient of a message should be able to access the

contents of the message, i.e. no unauthorized entity or

attacker should be able to gain access to the

unencrypted plaintext.

C. Integrity

The integrity of the message should be preserved i.e.

an unauthorized entity should not be able to modify

or tamper with the contents of the message. Only the

sender and recipient should have this privilege[1-4].

D. Non-repudiation

This principle prevents either party involved in the

transaction to prevent that the transaction occurred.

That is, it prevents the sender from denying that he or

she sent the message after having already sent it.

Similarly, it prevents the receiver from denying that

he or she received the message after having already

received it.

Thus, the cryptographic algorithms that implement

the above principles serve a number of important

functions. Through authentication, they ensure that

the correct parties are involved in the transaction or

message transfer. By ensuring confidentiality, they

prevent unauthorized access and by integrity, they

make sure that no outside parties can change the

contents of the message. Finally, via non-repudiation,

the algorithms also ensure that the parties that are

involved in the transaction cannot later deny that they

participated in it.

Review Article

Abstract
With an increasing reliance on online communications and transactions, the need for effective cryptographic algorithms

to ensure security and reliability has never been more important, especially with the rise of big data. This paper provides a

survey of different cryptographic algorithms that have been used in the past and are being used today to provide such

security. The different cryptographic algorithms can be divided into three categories–symmetric key algorithms,

asymmetric key algorithms and hash functions. The objective of the paper is to provide an overview of these different

types of cryptographic algorithms and to serve as a basic introduction to the field. Another goal is to discuss some of the

cryptographic challenges that are faced in the domain of big data.

Keywords
Symmetric key cryptography, Asymmetric key cryptography, Cryptographic hash function, Cryptographic algorithm, Big

data security.

Anurag Sarkar

8

All cryptographic algorithms consist of two basic

processes–encryption and decryption. In the

encryption process, the algorithm takes the plaintext

i.e. the text that is readable and converts it through

one or more manipulations, into an encrypted text

called the ciphertext. The ciphertext is not readable

and hence cannot be understood if intercepted by

attackers. The ciphertext is then converted back into

the original, readable plaintext by the decryption

process.

In this paper, the cryptographic algorithms have been

divided into three basic categories – symmetric key

algorithms, asymmetric key algorithms and hash

functions. The following sections will discuss each of

these classes of algorithms separately.

2.Symmetric key algorithms
In symmetric key cryptographic algorithms, only one

key is used for both encryption and decryption. That

is, the same key is used both to encrypt the plaintext

into ciphertext at the sender‟s end and to decrypt the

ciphertext into plaintext at the receiver‟s end. This

symmetry of the encryption and decryption processes

gives this class of algorithms its name. Additionally,

since the key is known only to the sender and

receiver and must be kept secret, this form of

cryptography is also known as secret-key

cryptography or private-key cryptography.

Symmetric key algorithms suffer from two primary

drawbacks:

 Symmetric key algorithms require the two parties

to share a secret key. However, the problem is that

the sender and receiver must somehow agree on

the key in the first place. A naive solution to this is

to establish a secret channel of communication

accessible only to the sender and the receiver and

use that to exchange the key. However, if such a

channel exists, then it makes sense to exchange the

plaintext message itself. A practical solution to this

problem was proposed by Whitfield Diffie and

Martin Hellman in 1976, named the Diffie-

Hellman Key Exchange algorithm. Refer to [6] for

details on this algorithm.

 Each pair of communicating parties requires its

own secret key. If only 2 parties are

communicating with each other, then 1 key is

needed. However, if 3 parties are involved, then

the number of keys required increases to 3. For n

users, the number of keys is given by (n(n-1))/2.

For commercial transactions, involving thousands

of merchants and customers, the number of keys is

large and impractical.

Regardless of the above drawbacks, symmetric key

algorithms are still used widely used in practice as

these disadvantages have been overcome by various

novel techniques and ideas. We now discuss some of

the most important symmetric key algorithms.

2.1.Data encryption standard (DES)

The Data Encryption Standard was a tremendously

popular symmetric key algorithm, developed by IBM

in the early 1970s, based on work by Horst Feistel.

This algorithm was then submitted to the National

Bureau of Standards (NBS, now known as NIST) in

1972 after the NBS invited proposals for algorithms

to protect sensitive and critical government data.

Eventually, after consultation with the National

Security Agency (NSA), the NBS adopted a modified

version of IBM‟s algorithm in 1976 and published it

is an official Federal Information Processing

Standard (FIPS) in 1977.

DES is a block cipher, i.e. it takes as input a fixed-

length plaintext string and converts it, through a

series of complex operations, into a ciphertext string

of the same length. The block size in DES is 64 bits.

To encrypt the plaintext (or decrypt the ciphertext),

DES uses a 64-bit key of which only 56 bits are

actually used, the remaining 8 bits only for parity

checking purposes. The algorithm itself consists of

16 rounds and makes use of the Feistel function and

the XOR operation. For an in-depth discussion on the

working of DES, refer to [5].

In modern times, DES is considered insufficient for a

majority of applications, due to its relatively small

56-bit key size. Since the inner workings of the DES

algorithm are publicly known, its strength is based on

its key size. A 56-bit key size means that there are

256 possible keys. In January 1999, the Electronic

Frontier Foundation and distributed.net succeeded in

breaking a DES key in 22 hours and 15 minutes.

Cryptanalysis techniques such as differential and

linear cryptanalysis have been shown to theoretically

be able to break the full 16 rounds of DES but are

difficult to implement in practice.
2.1.1.Double DES

To overcome the limitations of DES, but preserve its

working principles, Double DES was developed. This

uses 2 keys, K1 and K2. First, the original plaintext is

encrypted using the DES algorithm with key K1. This

encrypted text is encrypted again using the DES

algorithm, this time with key K2. The output of this

second operation is the final cipher text. Decryption

is the same, only the order of keys used is reversed.

ACCENTS Transactions on Information Security, Vol 1(1)

9

One drawback of Double DES is that it suffers from

the Meet-in-the-Middle attack.
2.1.2.Triple DES (3DES)

To overcome the Meet-in-the-Middle attack, 3DES

was introduced, which as the name suggests, consists

simply of the application of the DES algorithm three

times to produce the final cipher text. There are two

types of 3DES – one uses three different keys, while

the other uses two different keys. When three keys

are used, the encryption process simply involves

using each key to encrypt the message one after the

other. However, when two keys are used, say K1 and

K2, first, the plaintext is encrypted with K1. This

encrypted plaintext is then decrypted using K2. This

decrypted text is finally encrypted using K2 to

produce the final cipher text. This mode is also

referred to as the Encrypt-Decrypt-Encrypt (EDE)

mode.
2.1.3.Advantages of DES

 Since DES was developed in the 1970s and

designed to run on the hardware from that era, it is

extremely fast on modern hardware.

 DES being an ANSI standard means that it can be

implemented by any person without requiring any

licensing costs.

 Although DES has been around for several

decades, the only known attack on it is brute-force.
2.1.4.Disadvantages of DES

 DES is not optimized for software

implementations.

 With increasing improvements in hardware, the

likelihood of cracking DES is increasing daily.

 The 56 bit key is not considered to be sufficiently

long to provide good security in the face of

modern hardware and parallel processing.

2.2.International data encryption algorithm

(IDEA)

IDEA was proposed by Xuejia Lai and James Massey

in 1991 and was intended to be a replacement for the

previously described DES. The popular email

security protocol PGP (Pretty Good Privacy) is based

on IDEA.

Like DES, IDEA is a block cipher consisting of 64-

bit blocks, but uses a 128-bit key. It consists of 8

rounds, each of which makes use of modular

addition, multiplication and the XOR operation. The

8 rounds are followed by the Output transformation

stage.
2.2.1.Advantages of IDEA

 It performs at twice the speed of DES.

 Since the key-length is 128 bits, brute force attacks

require an incredible amount of computing power

to be successful[7-9].
2.2.2.Disadvantages of IDEA

• Licensing fee is required for using IDEA to

provide security in commercial applications.

• DES is more popular and widely accepted since it

has been around for far longer than IDEA.

2.3.RC5

RC5 is a symmetric key block encryption algorithm

developed by Ron Rivest in 1994. Unlike the

previous algorithms, RC5 utilizes a variable number

of rounds (0 to 255), a variable block size (32, 64 or

128 bits) and a variable length key size (0 to 2040

bits). The values for each of these parameters can be

set according to the specific application and varying

security need for which RC5 is required.
2.3.1.Advantages of RC5

 The design is concise and it does not require a

lookup table that takes up a large amount of

storage.

 It requires far less memory than the AES algorithm

we will look at shortly

 The word size, number of iterations and key length

are all variable. RC5 is often denoted as RC5-

w/r/b where w denotes the word size in bits, r

denotes the number of rounds and b denotes the

number of 8-bit bytes in the key.

 It is simple and efficient since it makes use of only

primitive operations such as modular addition,

XOR and shift.

2.4.Blowfish

Blowfish is a block cipher developed by Bruce

Schneier and was first published in 1993. Like in

IDEA and DES, the block size of Blowfish is 64 bits

and the key length varies from 32 to 448 bits. Also

similar to DES, Blowfish makes use of 16 rounds of

Feistel ciphers and employs large key-dependent S-

boxes[10-13].

Blowfish has since been succeeded by the more

modern ciphers Twofish and Threefish.
2.4.1Advantages of blowfish

 Fast–The encryption rate on 32-bit

microprocessors is 26 clock cycles per byte

 Compact–The algorithm requires less than 5kb

memory to execute

 Simple–Like RC5, Blowfish uses primitive

operations such as XOR, addition and table

lookup, thus allowing for a simple and efficient

implementation

Anurag Sarkar

10

 Secure–The variable key length (up to 448 bits)

makes the algorithm secure as well as flexible
2.4.2Disadvantages of blowfish

 It is fast except when the keys need to be changed

with each new key requiring preprocessing

equivalent to the encryption of approximately 4kb

of text. This is quite slow compared to other block

ciphers.

2.5.Advanced encryption standard (AES)

The AES cryptographic algorithm was established by

the US National Institute of Standards and

Technology (NIST) in 2001 and is based on the

Rijndael cipher developed by Vincent Rijmen and

John Daemen.

AES was developed to overcome the limitations of

DES that we discussed previously, namely its 56-bit

key length and 64-bit block size, both of which were

considered too weak to withstand modern exhaustive

key searches utilizing a great amount of

computational power.

AES is a combination of both permutation and

substitution and performs fast in both hardware and

software. It uses a fixed block size of 128 bits and

key sizes of 128, 192 or 256 bits. Unlike DES, it does

not make use of Feistel ciphers. The number of

rounds that take place depend on the length of the

key. For 128-bit keys, there are 10 rounds, for 192-bit

keys there are 12, and for 256-bit keys there are 14

rounds.

Although several theoretical attacks have been

proposed and cryptographic breaks have been

achieved [10], as of now, there are no known

practical attacks on AES.
2.5.1Advantages of AES

 It supports larger key lengths than any variation of

DES.

 It is faster than DES in both hardware and

software.

 Block size of 128 bits means that it is less

susceptible to attacks than 3DES which uses 64-bit

blocks[14].

2.5.2Disadvantages of AES

 With recent advances in hardware and computing

power, AES has been shown to be vulnerable to

certain types of attacks particularly those related to

boomerang and rectangle attack with related key-

differentials [15]. Details of the inner workings of

all these algorithms can be found in [5].

3. Asymmetric key algorithms
According to [4], “the conceptual differences

between the two systems are based on how these

systems keep a secret. In symmetric key

cryptography, the secret must be shared between two

persons. In asymmetric key cryptography, the secret

is personal (unshared); each person creates and keeps

his or her own secret.”

Unlike in symmetric key cryptography, in which only

one key is used for encryption and decryption, in

asymmetric key cryptographic algorithms, we use

two keys, one for encryption and the other for

decryption. Each person has two keys – a public key

and a private key. Whenever user A wants to send an

encrypted message to user B, A must encrypt the

message using B‟s public key, which is not kept

secret. However, only B‟s private key, which is

known only to B, can be used to decrypt the message.

The introduction of asymmetric key cryptography

does not mean however that symmetric key

cryptography is obsolete. Asymmetric cryptographic

algorithms are slower than symmetric algorithms

because they make use of complex mathematical

functions unlike symmetric cryptographic algorithms

which use simple operations like addition, XOR, etc.

Hence, for encrypting large messages, symmetric

algorithms are still preferred. Asymmetric

cryptographic algorithms find applications in digital

signatures, authentication and key exchanges, and

thus, a combination of both symmetric and

asymmetric algorithms are needed to build a secure

cryptosystem.

The key idea in asymmetric key cryptography is the

concept of a trapdoor one-way function. A one-way

function is one which is easy to compute but whose

inverse is computationally infeasible. A trapdoor one-

way function is one in which a trapdoor, i.e. a known

secret value, allows the inverse to be computed easily

as well.

We now discuss some important asymmetric key

cryptosystems.

3.1.RSA cryptosystem

This is the most popular asymmetric key algorithm

and is named after its inventors Ron Rivest, Adi

Shamir and Len Adleman. It was first publicly

published in 1977. It is based on the computational

infeasibility of factoring the product of two large

prime numbers and uses modular exponentiation for

encryption and decryption.

ACCENTS Transactions on Information Security, Vol 1(1)

11

RSA uses a public exponent e and a private exponent

d. If P is the plaintext and C is the ciphertext, then at

the encryption end, C is calculated as C = (P^e) mod

n. Similarly, at the decryption end, P is calculated

from C as P = (C^d) mod n. The modulus n is a very

large number that is the product of 2 large prime

numbers. Thus, in RSA, the one-way function is

modular exponentiation and the trapdoor is the

exponent d, known only to the person authorized to

decrypt the ciphertext. In order to break RSA, the

attacker must be able to calculate the eth root modulo

n of C. Since there are no known polynomial time

algorithms to achieve this, there are no known attacks

on RSA.

The value of n, as stated before, is generated as the

product of two large prime numbers, p and q. It is

imperative that these numbers are large, failing which

RSA is prone to brute-force attacks. The

recommended size for p and q is 512 bits each, thus

making the size of n approximately 1024 bits. The

exponents e and d are selected using a key generation

process that involves n, p and q. First, p and q are

generated and n is calculated as their product. Then

we calculate the totient of n, t(n), which is equal to

the product of (p-1) and (q-1). The exponent e is then

selected from the range [1, t(n)] and must be co-

prime to t(n). d is then calculated as the inverse of e

modulo t(n). The tuple (e, n) then forms the public

key and d is the private key.

As mentioned previously, there are no known attacks

that can fully break RSA, however some attacks have

been developed that target weak plaintext and weak

choices of parameters. These are listed below:

 Chosen Cipher text

 Factorization–if modulus is not sufficiently large

 Plaintext–this includes short message attack,

cycling attack and unconcealed message attack

 Common Modulus

 Encryption exponent–if the exponent e is too low;

attacks include Coppersmith theorem attack,

broadcast attack, related message attack and short

pad attack

 Decryption exponent–includes revealed decryption

exponent attack and low decryption exponent

attack

 Implementation –attacks on the implementation of

RSA include timing attacks and power attacks
3.1.1Advantages of RSA

 It is very secure since it is infeasible to factor n in

order to find out p and q provided that n is

sufficiently large.

 It supports digital signatures

 It has wide industry support
3.1.2Disadvantages of RSA

 It is slower and more computationally intensive

than the symmetric key algorithms we discussed

previously

 The two-part key may be susceptible to GCD

attack if the algorithm is improperly implemented.

3.2.Rabin cryptosystem

The Rabin cryptosystem is another asymmetric key

algorithm which is similar to RSA and was

developed by Michael Rabin in 1979. Unlike RSA,

which is based on exponentiation congruence, the

Rabin cryptosystem is based on quadratic

congruence. In this system, the values of e and d are

fixed; e = 2 and d = ½. Thus, the encryption process

reduces to calculating C = P2 mod n, and the

decryption process reduces to calculating P= (C^½)

mod n. The public key is n and the tuple (p, q) is the

private key. Like in RSA, n is the product of two

large prime numbers p and q.
3.2.1 Advantages of rabin cryptosystem

 The problem of breaking the Rabin cryptosystem

has been shown to be as difficult as integer

factorization.

 The square of modulo n must be calculated for

encryption which makes it more efficient than

RSA in which a cube must be computed.
3.2.2 Disadvantages of cabin cryptosystem

 A major drawback of the Rabin system is that

decryption produces four equally probable

plaintexts and thus the correct plaintext must be

guessed from among these four. This is not a

major issue when the plaintext is alphabetic but

numeric plaintexts can be very problematic in this

regard and necessitate the use of advanced

disambiguation methods.

3.3.El gamal cryptosystem

Like RSA and Rabin, the ElGamal cryptosystem is an

asymmetric key cryptosystem, developed by Taher

ElGamal in 1985. It is based on the Diffie-Hellman

key exchange algorithm and finds use in recent

versions of PGP, the GNU Privacy Guard software

and several other cryptosystems. The core concept in

the ElGamal system is the discrete logarithm

problem. That is, if p is a very large prime number,

e1 is a primitive root in the group G = <Zp*, x> and r

is an integer, then e2 = (e1^r) mod p can be computed

easily but given the values e1, e2 and p, computing r

= loge1e2 mod p is computationally infeasible. The

ElGamal cryptosystem involves 3 stages–key

generation, encryption and decryption.

Anurag Sarkar

12

1) Key generation

The sender selects a large prime number p and a

member d of the group G = <Zp*, x> such that 1 <=

d <= p-2. The primitive root of this group is e1. Then,

e2 is calculated as e2 = e1^d mod p. The public key

is formed as the tuple (e1, e2, p) and the private key

is d.

2) Encryption

A random integer r is selected in the group G given

above. C1 is calculated as e1^r mod p and C2 is

calculated as (P x e2^r) mod p where P is the

plaintext. C1 and C2 are the two ciphertexts.

3) Decryption

To retrieve the plaintext, P is calculated as [C2

(C1^d)-1] mod p.
3.3.1.Advantages of El gamal cryptosystem

 It is suitable for use in hybrid cryptosystems where

the original plaintext message is encrypted using a

symmetric algorithm and then ElGamal is

employed to encrypt the key
3.3.2.Disadvantages of El gamal cryptosystem

 It is susceptible to known plaintext attack if the

same value of r is reused during encryption

 In general, ElGamal encryption results in a

message expansion of 2:1 from plaintext to

ciphertext

Refer to [4] for a more detailed discussion on the

working principles of these asymmetric

cryptosystems.

4. Cryptographic hash functions
Cryptographic hash functions are cryptographic

algorithms that differ from the above two classes of

algorithms in that they do not use a key for

encryption/decryption. Instead, they compute a fixed-

length value called the hash which is based on the

properties of the plaintext in a way that makes it

impossible for the length or contents of the original

plaintext to be recovered from the hash value. A

common use of hash functions is to encrypt

passwords. Common hash functions are given below:

4.1.Message digest (MD)

MD algorithms include a number of byte-oriented

algorithms that generate 128-bit hash values from

messages of any arbitrary length. The most popular

version is MD5 which was developed by Ron Rivest.

4.2.Secure hash algorithm (SHA)

This was developed as the NIST‟s Secure Hash

Standard (SHS). The SHA-1 variant generates a 160-

bit hash value. SHA-2 consists of 5 different SHA

algorithms, the original SHA-1, along with SHA-224,

SHA-256, SHA-384 and SHA-512, which produce

hash values of length 224 bits, 256 bits, 384 bits and

512 bits respectively.

4.3.Race integrity primitives evaluation message

digest (RIPEMD)

This is a family of hash functions develop by Hans

Dobbertin, Antoon Bosselaers and Bart Preneel in

Leuven, Belgium, published in 1996. The design of

RIPEMD is similar to that of MD4 and has a similar

performance to SHA-1. The improved RIPEMD-160

was designed to perform optimally on 32-bit

processors and was intended to replace 128-bit hash

functions. Other variants are RIPEMD-128,

RIPEMD-256 and RIPEMD-320.

4.4.Hash of variable length (HAVAL)

Invented by Yuliang Zheng, Josef Pieprzyk and

Jennifer Seberry in 1992, HAVAL is a hash function

capable of producing hashes of variable lengths (128

bits, 160 bits, 192 bits, 224 bits, 256 bits) and also

allows the user to determine the number of rounds

that are to be used to produce the hash value.

4.5.Tiger

This was designed by Ross Anderson and Eli Biham

in 1995 to run efficiently on 64-bit platforms. It

produces a hash of size 192 bits. Shorter versions

have been developed that generate hashes of size 128

and 160 bits to provide compatibility with other

commonly used hash functions.

4.6.Whirlpool

This cryptographic hash function was designed by

Vincent Rijmen and Paulo S. L. M. Barreto in 2000

and is based on a heavily modified version of AES. It

takes as input messages of size less than 2^256 bits

and produces a message digest of 512 bits. Since its

structure is vastly different than that of SHA-1 and

MD5, it is not prone to the same types of attacks.

5. Cryptographic challenges in big data
Big Data is a field that has gained tremendous

popularity and importance in the recent past. With the

increasing amount of data and information due to the

rapid growth of social networks and the internet, it is

crucial that secure ways of working with big data are

researched and developed. In this section, we take a

look at some of the key challenges in implementing

security in the domain of big data.

ACCENTS Transactions on Information Security, Vol 1(1)

13

5.1.Infrastructure security
5.1.1Distributed secure computation

In order to process massive amount of data, as is the

case with big data applications, parallel computations

and storage is required. The MapReduce framework

offers these capabilities. An important challenge is to

secure the individual processors from attack and to

protect the data from any compromised processors.
5.1.2Security for non-relational data

Most non-relational data stores do not provide

explicit support for implementing security to protect

against various attacks. Thus, developers using

NoSQL databases usually have to embed security

measures in the middleware. This becomes even

more problematic when dealing with clusters of

databases as is the case in big data.

5.2Data privacy
5.2.1Data mining and analytics

Data mining algorithms working on large collections

of data about people may inadvertently disclose

private and confidential information. Thus,

appropriate measures need to be taken to ensure the

privacy of individuals and avoid legal infringement.
5.2.2Granular access control

Controlling access to data is a major challenge in a

big data setting with a large amount of data and a

large amount of users, each with its set of unique

access privileges. Ensuring users can access the data

they are eligible to and can‟t access data they are not

authorized to must be accomplished in a cost-

effective manner.
5.2.3 Data centric Security

Although data can be protected by securing the

system in which it is contained, this may be

problematic in a big data scenario where networks

consisting of several parallel systems and nodes may

offer many ways for attackers to breach the system

security. Thus, it is more desirable to use various

cryptographic measures to secure the data contained

within the systems rather than simply securing the

system and leaving the data inside vulnerable[16].

5.3Integrity and reactive security
5.3.1.Real time monitoring

Monitoring security in real-time is challenging in a

big data environment as security alerts are generated

regularly by some device or the other amongst the

many hundreds of devices that may be in action.

Many of these alerts turn out to be false positives and

thus the challenge is to determine which alerts need

to be addressed immediately, which can be addressed

later and which can be ignored.

5.3.2 End-point validation and filtering

As big data involves collecting input data from a

large amount and variety of sources, a key challenge

is to ensure proper validation of all of this diverse

data. Even more important is filtering out any input

data that has malicious intent such as viruses, worms,

injection attacks, etc.

5.4Data management
5.4.1Secure storage & transaction logs

Due to the massive size of data sets used in big data

applications, auto-tiered systems are used for data

management. However, unlike manual tiered systems

in which data movement could be monitored by

administrators, auto-tiered systems do not effectively

keep track of data moving between tiers. This of

course is a threat to securing the data and protecting

it from being stolen. Thus, effective measures are

needed to prevent any unauthorized access.
5.4.2Data provenance

Keeping records about the origins and ownership of

the data that is accumulated for big data applications

is a difficult task. Methods are needed to effectively

manage such provenance metadata and to analyze it

in order to find useful and meaningful dependencies

between different data sources in a manner that is not

too computationally intensive[17].
5.4.3Granular audits

While real time security monitoring (5.3.1) is

certainly a goal of big data security, it is still

necessary to perform audits to ensure no significant

attacks or alerts went unattended. Understanding

when, why and how an attack took place is essential

in providing security in the future.

6. Conclusion
This paper provided a brief overview of symmetric

key and asymmetric key cryptographic algorithms as

well as cryptographic hash functions and discussed

some popular algorithms in each category. We also

looked at some of the cryptographic challenges

offered by the field of big data. With increasing

computational power and resources, there has been a

need to constantly improve upon each of the

cryptographic algorithms in order to provide security

against attacks and intruders. Thus, in the future, it

would be useful to conduct a study comparing the

performance and efficiency of these algorithms,

particularly in a modern setting, and research ways in

which these algorithms may need to be enhanced so

that they remain immune to attacks and may be

effectively applied in big data applications.

Anurag Sarkar

14

Acknowledgment
None.

Conflicts of interest
The author has no conflicts of interest to declare.

References

[1] Kessler GC. An overview of cryptography.

https://www.garykessler.net/library/crypto.html.

 Accessed 26 October 2015.

[2] Wheeler DA. Secure Programming HOWTO.

https://www.dwheeler.com/secure-programs/Secure-

Programs-HOWTO.pdf Accessed 26 October 2015.

[3] Noubir, G. Fundamentals of cryptography:algorithms,

and security services.

http://www.ccs.neu.edu/home/noubir/Courses/CSU61

0/S06/cryptography.pdf. Accessed 26 October 2015.

[4] Forouzan BA, Mukhopadhyay D. Cryptography and

network security (Sie). McGraw-Hill Education; 2011.

[5] Kahate A. Cryptography and network security. Tata

McGraw-Hill Education; 2013.

[6] Palmgren K. Diffie-hellman key exchange: a non-

mathematician‟s explanation. ISSA J. 2006.

[7] Standard DE. Data encryption standard. Federal

information processing standards publication. 1999.

[8] https://en.wikipedia.org/wiki/International_Data_Encr

yption_Algorithm. Accessed 26 October 2015.

[9] https://en.wikipedia.org/w/index.php?title=Blowfish_(

cipher)&oldid=680738067. Accessed 26 October

2015.

[10] Miller FP, Vandome AF, McBrewster J. Advanced

encryption standard.2009.

[11] https://en.wikipedia.org/w/index.php?title=RSA_(cryp

tosystem)&oldid=688848088 Accesed 26 October

2015.

[12] https://en.wikipedia.org/w/index.php?title=Rabin_cryp

tosystem&oldid=685082841. Accessed 10 October

2015.

[13] https://en.wikipedia.org/w/index.php?title=ElGamal_e

ncryption&oldid=675442904. Accessed 10 October

2015.

[14] Gawali DH, Wadhai VM. Rc5 algorithm: potential

cipher solution for security in wireless body sensor

networks (WBSN). International Journal of Advanced

Smart Sensor Network Systems. 2012; 2(3):1-7.

[15] Jain R, Jejurkar R, Chopade S, Vaidya S, Sanap M.

AES algorithm using 512 bit key implementation for

secure communication. International Journal of

Innovative Research in Computer and Communication

Engineering. 2014; 2(3):3516-22.

[16] Yadav PS, Sharma P, Yadav KP. Implementation of

RSA algorithm using Elliptic curve algorithm for

security and performance enhancement. International

Journal of Scientific & Technology Research. 2012;

1(4):102-5.

[17] https://downloads.cloudsecurityalliance.org/initiatives/

bdwg/Expanded_Top_Ten_Big_Data_Security_and_P

rivacy_Challenges.pdf. Accesed 26 October 2015.

Anurag Sarkar is currently a post-

graduate student at the Department of

Computer Sciene at St. Xavier‟s

College, Kolkata. His research interests

include machine learning and data

mining.

https://www.garykessler.net/library/crypto.html
https://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO.pdf
https://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO.pdf
http://www.ccs.neu.edu/home/noubir/Courses/CSU610/S06/cryptography.pdf.%20Accessed%2026%20October%202016
http://www.ccs.neu.edu/home/noubir/Courses/CSU610/S06/cryptography.pdf.%20Accessed%2026%20October%202016
https://en.wikipedia.org/wiki/International_Data_Encryption_Algorithm.%20Accessed%2026%20October%202016
https://en.wikipedia.org/wiki/International_Data_Encryption_Algorithm.%20Accessed%2026%20October%202016
https://en.wikipedia.org/w/index.php?title=Blowfish_(cipher)&oldid=680738067
https://en.wikipedia.org/w/index.php?title=Blowfish_(cipher)&oldid=680738067
https://en.wikipedia.org/w/index.php?title=RSA_(cryptosystem)&oldid=688848088
https://en.wikipedia.org/w/index.php?title=RSA_(cryptosystem)&oldid=688848088
https://en.wikipedia.org/w/index.php?title=Rabin_cryptosystem&oldid=685082841
https://en.wikipedia.org/w/index.php?title=Rabin_cryptosystem&oldid=685082841
https://en.wikipedia.org/w/index.php?title=ElGamal_encryption&oldid=675442904
https://en.wikipedia.org/w/index.php?title=ElGamal_encryption&oldid=675442904
https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Expanded_Top_Ten_Big_Data_Security_and_Privacy_Challenges.pdf
https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Expanded_Top_Ten_Big_Data_Security_and_Privacy_Challenges.pdf
https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Expanded_Top_Ten_Big_Data_Security_and_Privacy_Challenges.pdf

