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1.Introduction 
In today's digitally interconnected world, where data 

is constantly being transmitted across networks, 

ensuring the security and integrity of these networks 

is of paramount importance [1, 2]. As the digital 

landscape continues to evolve, so do the tactics 

employed by malicious actors seeking unauthorized 

access to sensitive information. Intrusion detection 

systems (IDSs) play a pivotal role in safeguarding 

networks by monitoring and identifying abnormal 

activities or intrusions [35].  

 

The proliferation of the internet and the ubiquity of 

networked systems have revolutionized the way 

individuals and organizations interact and transact [6, 

7]. However, this digital revolution has also exposed 

these networks to an array of security threats [8, 9]. 

IDSs, conceived as a response to this ongoing threat 

landscape, have evolved to become indispensable 

components of network security [10, 11]. 

 

Traditional rule-based IDSs rely on predefined 

patterns to detect known attacks [1216].  
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While effective in some scenarios, they often fall 

short when faced with previously unseen or evolving 

threats. Machine learning-based IDSs offer a more 

adaptive and proactive approach. [17, 18] These 

systems leverage the power of data to learn and 

recognize patterns indicative of intrusions. One 

crucial step in this process is the availability of 

comprehensive and diverse datasets for training and 

evaluation. 

 

The NSL-KDD dataset, an improved version of the 

widely used KDD'99 dataset, has emerged as a 

benchmark dataset in the field of intrusion detection 

[19, 20]. It addresses some of the limitations of its 

predecessor, including the removal of duplicate and 

redundant records. Its multi-class nature encompasses 

various attack categories, making it an ideal choice 

for evaluating IDSs in real-world scenarios [1820]. 

 

The motivation behind this research stems from the 

ever-increasing sophistication of cyber threats. 

Attackers are continually devising novel techniques 

to evade traditional security measures. Therefore, 

there is a compelling need for IDSs that can adapt 

and learn from data, allowing them to detect not only 

known attacks but also emerging threats. Ant Colony 

Optimization (ACO), inspired by the foraging 

behavior of ants, has demonstrated its effectiveness 
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in solving complex optimization problems. When 

applied to the realm of intrusion detection, ACO has 

the potential to enhance the accuracy and efficiency 

of anomaly detection. K-means clustering, on the 

other hand, is a powerful unsupervised learning 

technique that can be used to group network data into 

clusters, making it easier to identify abnormal 

patterns. Combining ACO with K-means clustering 

offers a promising avenue for improving the 

detection capabilities of IDSs.  

 

The primary objective of this research is to apply 

ACO in conjunction with k-means-based clustering 

(ACO-KM) to detect intrusions on the NSL-KDD 

dataset. ACO has been used as a feature selection 

mechanism to identify the most relevant features for 

intrusion detection within the NSL-KDD dataset. K-

means clustering has been applied to group network 

data into clusters based on the selected features.  

 

This paper is organized as follows: Section 2 

explores the review and analysis. Section 3 discusses 

the methods used. Results and discussions are 

elaborated in Section 4. Finally, the conclusion is 

presented in Section 5. 

 

2.Literature review 
In this literature review section, a thorough 

examination and analysis of the research concerning 

intrusion detection systems (IDS) have been 

elaborated. This analysis encompasses a 

comprehensive overview of the relevant academic 

work, aiming to provide a deeper understanding of 

the state-of-the-art in IDS research. We scrutinize 

various methodologies, techniques, and findings from 

prior studies to identify trends, strengths, weaknesses, 

and emerging areas of interest within the field of 

intrusion detection. 

 

In 2022, Zhang et al. [21] explored machine learning 

algorithms in network intrusion detection, 

categorizing them as traditional, ensemble, and deep 

learning. Ensemble learning outperformed, while 

Naive Bayes excelled at new attacks but lacked 

accuracy on familiar ones. Deep learning's 

effectiveness depended on architecture and 

hyperparameters. They also highlighted challenges 

and future research directions. 

 

In 2022, Balyan et al. [22] developed a hybrid 

network-based Intrusion Detection System (HNIDS) 

to address data imbalance issues in machine learning-

based IDS. Their HNIDS achieved impressive 

accuracy, outperforming traditional ML methods on 

the NSL-KDD dataset. 

 

In 2022, Ullah et al. [23] addressed the need for 

secure online communication during the COVID-19 

pandemic. They proposed an intrusion detection 

system for Apache web servers, using the Naive 

Bayes algorithm for training. Their system achieved a 

high cross-validation accuracy of 98.6% using an 

IEEE dataset. 

 

In 2022, Saba et al. [24] emphasized the critical 

security challenges posed by the Internet of Things 

(IoT) and the need for advanced security measures. 

They proposed a CNN-based anomaly-based 

Intrusion Detection System (IDS) for IoT, achieving 

impressive accuracy of 99.51% on NID Dataset and 

92.85% on BoT-IoT datasets. 

 

In 2022, Liu et al. [25] addressed wireless sensor 

network security through edge computing, 

introducing a WSN intrusion detection model 

combining k-Nearest Neighbor and arithmetic 

optimization (AOA). Their model achieved 99% 

accuracy, particularly effective against DoS attacks. 

 

In 2022, Fu et al. [26] recognized the limitations of 

traditional network security methods and proposed 

DLNID, a deep learning-based model for traffic 

anomaly detection. DLNID demonstrated superior 

accuracy (90.73%) and F1 score (89.65%) on the 

NSL-KDD dataset. 

 

In 2022, Saheed et al. [27] highlighted the growing 

importance of securing IoT devices and proposed an 

ML-based IDS for IoT network attacks. Their model 

achieved remarkable accuracy (99.9%) and MCC 

(99.97%) on the UNSW-NB15 dataset. 

 

In 2022, Mushtaq et al. [28] tackled the challenges of 

intrusion detection system design, introducing a 

hybrid AE-LSTM model that significantly 

outperformed other techniques with an accuracy of 

89% on NSL-KDD. 

 

In 2022, Wahab [29] addressed data and concept drift 

in IoT-based IDS with an adaptive online deep neural 

network (DNN) solution, stabilizing performance 

over time in dynamic IoT environments. 

 

In 2023, Thakkar and Lohiya [30] focused on 

enhancing DNN-based IDS with a novel feature 

selection technique based on statistical importance 

fusion, achieving competitive results across multiple 
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intrusion detection datasets and considering 

execution time and statistical significance.  

 

3.Method 
The ACO-KM Algorithm for IDS combines Ant 

Colony Optimization (ACO) with K-means clustering 

to enhance intrusion detection capabilities. It begins 

by initializing essential parameters and empty 

clusters, followed by a main loop where a population 

of ants iteratively selects features using ACO and 

applies K-means clustering to evaluate fitness. 

Pheromone levels are updated based on fitness, and 

the loop continues until convergence or the maximum 

iteration limit is reached. Afterward, a final K-means 

clustering step is performed on selected features to 

obtain clusters, and intrusion detection performance 

metrics are evaluated. The algorithm outputs the 

chosen features, resulting clusters, and performance 

metrics, offering an effective approach to adaptively 

identify intrusions in network data. The dataset 

considerd was NSL-KDD dataset.  

 

This approach has been developed within the 

NETBEANS IDE environment, supported by JDK 

version 7 or higher. It provides the flexibility to 

choose between random data selection or processing 

the entire dataset simultaneously. For experimental 

purposes, random data selection has been employed 

to facilitate comparisons with previous research. 

However, it's worth noting that there is also an option 

to select and process all the data at once. The data 

can be classified either individually or as a group, 

allowing for various analysis methods. Figure 1 

shows the complete flowchart of the approach. 
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Figure 1 Flowchart of ACO-KM based system 

 

 

Dataset 

Initialize parameters 

Feature selection 

Evaluate fitness 

Update pheromone levels 

Output the selected features 

Max Iteration 

Perform K-means clustering 

Reject 



Ashvin Subhashchandra Pandey and  Mohan Kumar Patel 

26 

 

Algorithm: ACO-KM Algorithm for Intrusion 

Detection System 

Initialization: 

1. Initialize pheromone levels on all features. 

2. Initialize parameters (e.g., number of ants, 

max iterations, alpha, beta). 

3. Initialize K-means parameters (e.g., number 

of clusters, convergence threshold). 

4. Initialize empty clusters. 

 

Main Loop: 

5. For each iteration in the range of 

max_iterations: 

Create a population of ants. 

For each ant in the range of 

num_ants: 

Feature selection using ACO. 

selected_features = 

select_features_with_aco(pheromone_levels) 

Apply K-means clustering. 

clusters = k_means_clustering(selected_features, 

num_clusters) 

Evaluate fitness of clusters. 

fitness = evaluate_clusters(clusters) 

Update pheromone levels based on fitness. 

update_pheromone(pheromone_levels, 

selected_features, fitness) 

Check for convergence or max iterations. 

If convergence_criteria_met() or iteration== 

max_iterations, then exit the loop. 

Final Clustering: 

6. Perform K-means clustering on the selected 

features to obtain the final clusters. 

clusters= 

k_means_clustering(selected_features, num_clusters) 

 

Evaluate Intrusion Detection Performance: 

7. Evaluate intrusion detection performance 

metrics (e.g., accuracy, F1-score) using the 

final clusters. 

performance_metrics= 

evaluate_intrusion_detection(clusters) 

 

Output: 

8. Output the selected features, clusters, and 

performance metrics. 

 

End 

 

4.Results 
In this paper, we have specifically focused our 

analysis on the results of Denial of Service (DoS) 

attacks. We have examined the performance of our 

approach in detecting various types of DoS attacks, 

including Back, Land, Neptune, Smurf, Teardrop, 

and Pod. The corresponding percentages derived 

from our dataset are illustrated in Figure 2. The 

results unequivocally demonstrate that our approach 

exhibits superior accuracy in detecting these attacks, 

as indicated by the successful identification of a 

significant majority of them, as illustrated in Figure 

3. 

 

 
Figure 2 Occurrence percentage in the complete dataset 

 

0

10

20

30

40

50

60

70

80

90

100

Back Land Neptune Smurf Teardrop Pod

O
cc

u
re

n
ce

 p
er

ce
n

ta
g

e 

Attack type 

Occurrence (%)



ACCENTS Transactions on Information Security, Vol 7(28) 

27          

 

 
Figure 2 Occurrence percentage in the complete dataset 

 

 
Figure 3 

 

5.Conclusion  
In an era defined by digital connectivity, 

safeguarding networks against evolving cyber threats 

is paramount. This paper introduces the ACO-KM 

Algorithm for Intrusion Detection, which combines 

Ant Colony Optimization and K-means clustering to 

enhance network security. The approach's 

adaptability and effectiveness are demonstrated 

through the detection of various Denial of Service 

attacks. Leveraging the NSL-KDD dataset, our 

approach showcases remarkable accuracy in 

identifying these threats, underlining its potential to 

fortify network defenses in today's digitally 

transformed landscape. As network threats continue 

to evolve, the ACO-KM Algorithm offers a 

promising avenue to ensure the security and integrity 

of our interconnected networks.  
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