References |
: |
[1]Derrien S, Meye P, Raıpin P. Thing in, a research platform for the Web of Things. In 27th international symposium on modeling, analysis, and simulation of computer and telecommunication systems 2019 (pp. 431-2). IEEE.
|
[Crossref] |
[Google Scholar] |
[2]Gyrard A, Bonnet C, Boudaoud K, Serrano M. Assisting iot projects and developers in designing interoperable semantic web of things applications. In international conference on data science and data intensive systems 2015 (pp. 659-66). IEEE.
|
[Crossref] |
[Google Scholar] |
[3]Zhao W, Jiang H, Tang K, Pei W, Wu Y, Qayoom A. Knotted-line: a visual explorer for uncertainty in transportation system. Journal of Computer Languages. 2019; 53:1-8.
|
[Crossref] |
[Google Scholar] |
[4]Knight FH. Risk, uncertainty and profit. Houghton Mifflin; 1921.
|
[Google Scholar] |
[5]Gal A, Roitman H, Shraga R. Learning to rerank schema matches. IEEE Transactions on Knowledge and Data Engineering. 2019:1-14.
|
[Crossref] |
[Google Scholar] |
[6]Hariri RH, Fredericks EM, Bowers KM. Uncertainty in big data analytics: survey, opportunities, and challenges. Journal of Big Data. 2019; 6(1):1-6.
|
[Crossref] |
[Google Scholar] |
[7]Alagar V, Wan K. Understanding and measuring risk due to uncertainties in IoT. In international conference on smart internet of things 2019 (pp. 484-8). IEEE.
|
[Crossref] |
[Google Scholar] |
[8]Ba ML, Montenez S, Tang R, Abdessalem T. Integration of web sources under uncertainty and dependencies using probabilistic XML. In international conference on database systems for advanced applications 2014 (pp. 360-75). Springer, Berlin, Heidelberg.
|
[Crossref] |
[Google Scholar] |
[9]Mishra J, Ghosh S. Uncertain query processing using vague set or fuzzy set: which one is better? International Journal of Computers Communications & Control. 2014; 9(6):730-40.
|
[Crossref] |
[Google Scholar] |
[10]Díaz M, Martín C, Rubio B. State-of-the-art, challenges, and open issues in the integration of Internet of things and cloud computing. Journal of Network and Computer Applications. 2016; 67:99-117.
|
[Crossref] |
[Google Scholar] |
[11]Magruk A. The most important aspects of uncertainty in the internet of things field–context of smart buildings. Procedia Engineering. 2015; 122:220-7.
|
[Crossref] |
[Google Scholar] |
[12]Assoudi H, Lounis H. Coping with uncertainty in schema matching: Bayesian networks and agent-based modeling approach. In international conference on e-technologies 2015 (pp. 53-67). Springer, Cham.
|
[Crossref] |
[Google Scholar] |
[13]Zhang CJ, Chen L, Jagadish HV, Zhang M, Tong Y. Reducing uncertainty of schema matching via crowdsourcing with accuracy rates. IEEE Transactions on Knowledge and Data Engineering. 2018; 32(1):135-51.
|
[Crossref] |
[Google Scholar] |
[14]Boulaares S, Omri A, Sassi S, Benslimane D. A probabilistic approach: a model for the uncertain representation and navigation of uncertain web resources. In international conference on signal-image technology & internet-based systems 2018 (pp. 24-31). IEEE.
|
[Crossref] |
[Google Scholar] |
[15]Magruk A. Uncertainty in the sphere of the industry 4.0–potential areas to research. Business, Management and Education. 2016; 14(2):275-91.
|
[Google Scholar] |
[16]Ning C, You F. Optimization under uncertainty in the era of big data and deep learning: When machine learning meets mathematical programming. Computers & Chemical Engineering. 2019; 125:434-48.
|
[Crossref] |
[Google Scholar] |
[17]Tchernykh A, Schwiegelsohn U, Talbi EG, Babenko M. Towards understanding uncertainty in cloud computing with risks of confidentiality, integrity, and availability. Journal of Computational Science. 2019; 36:1-9.
|
[Crossref] |
[Google Scholar] |
[18]Kale SS, Patil PS. Data mining technology with fuzzy logic, neural networks and machine learning for agriculture. In data management, analytics and innovation 2019 (pp. 79-87). Springer, Singapore.
|
[Crossref] |
[Google Scholar] |
[19]Zhou Z, Liao H, Zhao X, Ai B, Guizani M. Reliable task offloading for vehicular fog computing under information asymmetry and information uncertainty. IEEE Transactions on Vehicular Technology. 2019; 68(9):8322-35.
|
[Crossref] |
[Google Scholar] |
[20]Atzori L, Iera A, Morabito G. The internet of things: a survey. Computer Networks. 2010; 54(15):2787-805.
|
[Crossref] |
[Google Scholar] |
[21]Zhang X, Deng Z, Parvinzamir F, Dong F. MyHealthAvatar lifestyle management support for cancer patients. Ecancermedicalscience. 2018; 12:1-17.
|
[Crossref] |
[Google Scholar] |
[22]Arfaoui A, Kribeche A, Senouci SM. Context-aware anonymous authentication protocols in the internet of things dedicated to e-health applications. Computer Networks. 2019; 159:23-36.
|
[Crossref] |
[Google Scholar] |
[23]Bellagente P, Depari A, Ferrari P, Flammini A, Sisinni E, Rinaldi S. M 3 IoT—message-oriented middleware for M-health internet of things: design and validation. In international instrumentation and measurement technology conference 2018 (pp. 1-6). IEEE.
|
[Crossref] |
[Google Scholar] |
[24]Qi J, Yang P, Min G, Amft O, Dong F, Xu L. Advanced internet of things for personalised healthcare systems: a survey. Pervasive and Mobile Computing. 2017; 41:132-49.
|
[Crossref] |
[Google Scholar] |
[25]Hamidouche L, Sens P, Monnet S, Refauvelet D. Toward heterogeneity-aware device-to-device data dissemination over Wi-Fi networks. In international conference on parallel and distributed systems 2017 (pp. 105-12). IEEE.
|
[Crossref] |
[Google Scholar] |
[26]Jabbar S, Ullah F, Khalid S, Khan M, Han K. Semantic interoperability in heterogeneous IoT infrastructure for healthcare. Wireless Communications and Mobile Computing. 2017; 2017:1-11.
|
[Crossref] |
[Google Scholar] |
[27]Piasco N, Sidibé D, Demonceaux C, Gouet-Brunet V. A survey on visual-based localization: On the benefit of heterogeneous data. Pattern Recognition. 2018; 74:90-109.
|
[Crossref] |
[Google Scholar] |
[28]Fortino G, Savaglio C, Palau CE, De Puga JS, Ganzha M, Paprzycki M, et al. Towards multi-layer interoperability of heterogeneous IoT platforms: The INTER-IoT approach. In integration, interconnection, and interoperability of IoT systems 2018 (pp. 199-232). Springer, Cham.
|
[Crossref] |
[Google Scholar] |
[29]Li S, Da Xu L, Zhao S. 5G Internet of things: a survey. Journal of Industrial Information Integration. 2018; 10:1-9.
|
[Crossref] |
[Google Scholar] |
[30]Yaqoob I, Hashem IA, Ahmed A, Kazmi SA, Hong CS. Internet of things forensics: Recent advances, taxonomy, requirements, and open challenges. Future Generation Computer Systems. 2019; 92:265-75.
|
[Crossref] |
[Google Scholar] |
[31]Kazmi A, Jan Z, Zappa A, Serrano M. Overcoming the heterogeneity in the internet of things for smart cities. In international workshop on interoperability and open-source solutions 2016 (pp. 20-35). Springer, Cham.
|
[Crossref] |
[Google Scholar] |
[32]Fang Z, Zhang F, Zhang D. Fine-grained travel time sensing in heterogeneous mobile networks. In proceedings of the 17th conference on embedded networked sensor systems 2019 (pp. 420-1).
|
[Crossref] |
[Google Scholar] |
[33]Delphinanto A, Koonen T, Den Hartog F. End-to-end available bandwidth probing in heterogeneous IP home networks. In consumer communications and networking conference 2011 (pp. 431-5). IEEE.
|
[Crossref] |
[Google Scholar] |
[34]Islam SR, Kwak D, Kabir MH, Hossain M, Kwak KS. The internet of things for health care: a comprehensive survey. IEEE Access. 2015; 3:678-708.
|
[Crossref] |
[Google Scholar] |
[35]Zhang K, Wang J, Wang M, Han X. Probabilistic skyline computation on vertically distributed uncertain data. In 39th international conference on distributed computing systems (ICDCS) 2019 (pp. 154-63). IEEE.
|
[Crossref] |
[Google Scholar] |
[36]Elkhodr M, Shahrestani S, Cheung H. The internet of things: new interoperability, management and security challenges. arXiv preprint arXiv:1604.04824. 2016.
|
[Google Scholar] |
[37]Botta A, De Donato W, Persico V, Pescapé A. Integration of cloud computing and internet of things: a survey. Future Generation Computer Systems. 2016; 56:684-700.
|
[Crossref] |
[Google Scholar] |
[38]Atlam HF, Alenezi A, Alharthi A, Walters RJ, Wills GB. Integration of cloud computing with internet of things: challenges and open issues. In international conference on internet of things (iThings) and IEEE green computing and communications (GreenCom) and IEEE cyber, physical and social computing (CPSCom) and IEEE smart data (SmartData) 2017 (pp. 670-5). IEEE.
|
[Crossref] |
[Google Scholar] |
[39]Stergiou C, Psannis KE, Kim BG, Gupta B. Secure integration of IoT and cloud computing. Future Generation Computer Systems. 2018; 78:964-75.
|
[Crossref] |
[Google Scholar] |
[40]Alavi AH, Jiao P, Buttlar WG, Lajnef N. Internet of things-enabled smart cities: state-of-the-art and future trends. Measurement. 2018; 129:589-606.
|
[Crossref] |
[Google Scholar] |
[41]Zhou Z, Guo Y, He Y, Zhao X, Bazzi WM. Access control and resource allocation for M2M communications in industrial automation. IEEE Transactions on Industrial Informatics. 2019; 15(5):3093-103.
|
[Crossref] |
[Google Scholar] |
[42]Lv T, Ma Y, Zeng J, Mathiopoulos PT. Millimeter-wave NOMA transmission in cellular M2M communications for internet of things. IEEE Internet of Things Journal. 2018; 5(3):1989-2000.
|
[Crossref] |
[Google Scholar] |
|