(Publisher of Peer Reviewed Open Access Journals)

International Journal of Advanced Technology and Engineering Exploration (IJATEE)

ISSN (Print):2394-5443    ISSN (Online):2394-7454
Volume-10 Issue-108 November-2023
Full-Text PDF
Paper Title : Role of machine learning approach for industrial internet of things (IIoT) in cloud environment-a systematic review
Author Name : Nabeela Hasan and Mansaf Alam
Abstract :

The industrial internet of things (IIoT) is related to the fourth industrial revolution and includes different applications and innovations for the conduction of industrial activities. The introduction of IIoT has revolutionized how manufacturing and industrial units traditionally worked. The current paper aims to analyse the privacy and security issues incorporated in the IIoT and the role of the machine learning (ML) approach for the IIoT. It also analyses industry focused internet of things (IoT) taxonomies and the application of IIoT systems in various smart cities. It is found that IIoT-enabled devices are based on advanced technologies such as big data, robotics, ML, operational technology (OT), and machine-to-machine (M2M) technologies. It helps to intelligently change the behaviour of different environments without any human intervention. ML-based IIoT devices can be used for smart energy, smart transportation, urban planning, and smart city characteristics.

Keywords : Industrial internet of things (IIoT), Machine learning (ML), Smart energy, Smart transportation, Sensors.
Cite this article : Hasan N, Alam M. Role of machine learning approach for industrial internet of things (IIoT) in cloud environment-a systematic review. International Journal of Advanced Technology and Engineering Exploration. 2023; 10(108):1391-1416. DOI:10.19101/IJATEE.2023.10101133.
References :
[1]Iqbal R, Maniak T, Doctor F, Karyotis C. Fault detection and isolation in industrial processes using deep learning approaches. IEEE Transactions on Industrial Informatics. 2019; 15(5):3077-84.
[Crossref] [Google Scholar]
[2]Shevchik SA, Masinelli G, Kenel C, Leinenbach C, Wasmer K. Deep learning for in situ and real-time quality monitoring in additive manufacturing using acoustic emission. IEEE Transactions on Industrial Informatics. 2019; 15(9):5194-203.
[Crossref] [Google Scholar]
[3]Li Y, Carabelli S, Fadda E, Manerba D, Tadei R, Terzo O. Machine learning and optimization for production rescheduling in industry 4.0. The International Journal of Advanced Manufacturing Technology. 2020; 110:2445-63.
[Crossref] [Google Scholar]
[4]Hossain MS, Al-hammadi M, Muhammad G. Automatic fruit classification using deep learning for industrial applications. IEEE Transactions on Industrial Informatics. 2018; 15(2):1027-34.
[Crossref] [Google Scholar]
[5]Munirathinam S. Industry 4.0: industrial internet of things (IIOT). In advances in computers 2020 (pp. 129-64). Elsevier.
[Crossref] [Google Scholar]
[6]Aceto G, Persico V, Pescapé A. A survey on information and communication technologies for industry 4.0: state-of-the-art, taxonomies, perspectives, and challenges. IEEE Communications Surveys & Tutorials. 2019; 21(4):3467-501.
[Crossref] [Google Scholar]
[7]Ray PP. A survey of IoT cloud platforms. Future Computing and Informatics Journal. 2016; 1(1-2):35-46.
[Crossref] [Google Scholar]
[8]Wan J, Li J, Imran M, Li D. A blockchain-based solution for enhancing security and privacy in smart factory. IEEE Transactions on Industrial Informatics. 2019; 15(6):3652-60.
[Crossref] [Google Scholar]
[9]Mohammed N, Chen R, Fung BC, Yu PS. Differentially private data release for data mining. In proceedings of the 17th international conference on knowledge discovery and data mining 2011 (pp. 493-501). ACM.
[Crossref] [Google Scholar]
[10]Hasan N, Alam M. Evolution and insight in industrial internet of things (IIoT): importance and impact. Trust‐Based Communication Systems for Internet of Things Applications. 2022:159-93.
[Crossref] [Google Scholar]
[11]https://webstore.ansi.org/preview-pages/ISA/preview_S_990001_2007.pdf. Accessed 11 May 2023.
[12]Boyes H, Hallaq B, Cunningham J, Watson T. The industrial internet of things (IIoT): an analysis framework. Computers in Industry. 2018; 101:1-2.
[Crossref] [Google Scholar]
[13]Da XL, He W, Li S. Internet of things in industries: a survey. IEEE Transactions on Industrial Informatics. 2014; 10(4):2233-43.
[Crossref] [Google Scholar]
[14]Liao Y, Loures ED, Deschamps F. Industrial internet of things: a systematic literature review and insights. IEEE Internet of Things Journal. 2018; 5(6):4515-25.
[Crossref] [Google Scholar]
[15]Piccarozzi M, Aquilani B, Gatti C. Industry 4.0 in management studies: a systematic literature review. Sustainability. 2018; 10(10):1-24.
[Crossref] [Google Scholar]
[16]Raza S, Faheem M, Guenes M. Industrial wireless sensor and actuator networks in industry 4.0: exploring requirements, protocols, and challenges-a MAC survey. International Journal of Communication Systems. 2019; 32(15):e4074.
[Crossref] [Google Scholar]
[17]Leminen S, Rajahonka M, Wendelin R, Westerlund M. Industrial internet of things business models in the machine-to-machine context. Industrial Marketing Management. 2020; 84:298-311.
[Crossref] [Google Scholar]
[18]Zolanvari M, Teixeira MA, Gupta L, Khan KM, Jain R. Machine learning-based network vulnerability analysis of industrial internet of things. IEEE Internet of Things Journal. 2019; 6(4):6822-34.
[Crossref] [Google Scholar]
[19]Mistry I, Tanwar S, Tyagi S, Kumar N. Blockchain for 5G-enabled IoT for industrial automation: a systematic review, solutions, and challenges. Mechanical Systems and Signal Processing. 2020; 135:106382.
[Crossref] [Google Scholar]
[20]Khan WZ, Rehman MH, Zangoti HM, Afzal MK, Armi N, Salah K. Industrial internet of things: recent advances, enabling technologies and open challenges. Computers & Electrical Engineering. 2020; 81:106522.
[Crossref] [Google Scholar]
[21]Ur RMH, Yaqoob I, Salah K, Imran M, Jayaraman PP, Perera C. The role of big data analytics in industrial internet of things. Future Generation Computer Systems. 2019; 99:247-59.
[Crossref] [Google Scholar]
[22]Heer T, Garcia-morchon O, Hummen R, Keoh SL, Kumar SS, Wehrle K. Security challenges in the IP-based internet of things. Wireless Personal Communications. 2011; 61:527-42.
[Crossref] [Google Scholar]
[23]Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems. 2013; 29(7):1645-60.
[Crossref] [Google Scholar]
[24]Cole PH, Ranasinghe DC. Networked RFID systems and lightweight cryptography. 2008.
[Crossref] [Google Scholar]
[25]Pöhls HC, Angelakis V, Suppan S, Fischer K, Oikonomou G, Tragos EZ, et al. RERUM: building a reliable IoT upon privacy-and security-enabled smart objects. In wireless communications and networking conference workshops 2014 (pp. 122-7). IEEE.
[Crossref] [Google Scholar]
[26]Sadeghi AR, Wachsmann C, Waidner M. Security and privacy challenges in industrial internet of things. In proceedings of the 52nd annual design automation conference 2015 (pp. 1-6). ACM.
[Crossref] [Google Scholar]
[27]Atamli AW, Martin A. Threat-based security analysis for the internet of things. In international workshop on secure internet of things 2014 (pp. 35-43). IEEE.
[Crossref] [Google Scholar]
[28]Zhang ZK, Cho MC, Wang CW, Hsu CW, Chen CK, Shieh S. IoT security: ongoing challenges and research opportunities. In 7th international conference on service-oriented computing and applications 2014 (pp. 230-4). IEEE.
[Crossref] [Google Scholar]
[29]Arends R, Austein R, Larson M, Massey D, Rose S. DNS security introduction and requirements. 2005.
[Google Scholar]
[30]http://www.internet-of-things-research.eu/pdf/IERC_Position_Paper_IoT_Governance_Privacy_Security_Final.pdf. Accessed 30 October 2023.
[31]Shahid R. Lightweight security solutions for the internet of things (Doctoral Thesis). UMI Order Number: ID Code: 5548. Mälardalen University. 2013.
[Google Scholar]
[32]Ziegeldorf JH, Morchon OG, Wehrle K. Privacy in the internet of things: threats and challenges. Security and Communication Networks. 2014; 7(12):2728-42.
[Crossref] [Google Scholar]
[33]Qureshi AS, Khan A, Shamim N, Durad MH. Intrusion detection using deep sparse auto-encoder and self-taught learning. Neural Computing and Applications. 2020; 32:3135-47.
[Crossref] [Google Scholar]
[34]Lanckriet GR, Ghaoui LE, Bhattacharyya C, Jordan MI. A robust minimax approach to classification. Journal of Machine Learning Research. 2002; 3:555-82.
[Google Scholar]
[35]Xu H, Caramanis C, Mannor S. Robust regression and lasso. Advances in Neural Information Processing Systems. 2008.
[Google Scholar]
[36]Paschali M, Conjeti S, Navarro F, Navab N. Generalizability vs. robustness: adversarial examples for medical imaging. International conference on medical image computing and computer-assisted intervention 2018 (pp. 493-501). Springer.
[Crossref] [Google Scholar]
[37]Tang C, Li W, Wang P, Wang L. Online human action recognition based on incremental learning of weighted covariance descriptors. Information Sciences. 2018; 467:219-37.
[Crossref] [Google Scholar]
[38]Ristin M, Guillaumin M, Gall J, Van GL. Incremental learning of random forests for large-scale image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2015; 38(3):490-503.
[Crossref] [Google Scholar]
[39]Du H, Teng S, Yang M, Zhu Q. Intrusion detection system based on improved SVM incremental learning. In international conference on artificial intelligence and computational intelligence 2009 (pp. 23-8). IEEE.
[Crossref] [Google Scholar]
[40]Miorandi D, Sicari S, De PF, Chlamtac I. Internet of things: vision, applications and research challenges. Ad Hoc Networks. 2012; 10(7):1497-516.
[Crossref] [Google Scholar]
[41]Alkhabbas F, Spalazzese R, Davidsson P. Characterizing internet of things systems through taxonomies: a systematic mapping study. Internet of Things. 2019; 7:100084.
[Crossref] [Google Scholar]
[42]Wang Y, Li J, Wang HH. Cluster and cloud computing framework for scientific metrology in flow control. Cluster Computing. 2019; 22:1189-98.
[Crossref] [Google Scholar]
[43]Mukherjee M, Shu L, Wang D. Survey of fog computing: fundamental, network applications, and research challenges. IEEE Communications Surveys & Tutorials. 2018; 20(3):1826-57.
[Crossref] [Google Scholar]
[44]Yu W, Liang F, He X, Hatcher WG, Lu C, Lin J, et al. A survey on the edge computing for the internet of things. IEEE Access. 2017; 6:6900-19.
[Crossref] [Google Scholar]
[45]Satyanarayanan M. The emergence of edge computing. Computer. 2017; 50(1):30-9.
[Crossref] [Google Scholar]
[46]Stergiou C, Psannis KE, Kim BG, Gupta B. Secure integration of IoT and cloud computing. Future Generation Computer Systems. 2018; 78:964-75.
[Crossref] [Google Scholar]
[47]Yang C, Huang Q, Li Z, Liu K, Hu F. Big data and cloud computing: innovation opportunities and challenges. International Journal of Digital Earth. 2017; 10(1):13-53.
[Crossref] [Google Scholar]
[48]Li S, Maddah-ali MA, Yu Q, Avestimehr AS. A fundamental tradeoff between computation and communication in distributed computing. IEEE Transactions on Information Theory. 2017; 64(1):109-28.
[Crossref] [Google Scholar]
[49]El-sayed H, Sankar S, Prasad M, Puthal D, Gupta A, Mohanty M, et al. Edge of things: the big picture on the integration of edge, IoT and the cloud in a distributed computing environment. IEEE Access. 2017; 6:1706-17.
[Crossref] [Google Scholar]
[50]Kanawaday A, Sane A. Machine learning for predictive maintenance of industrial machines using IoT sensor data. In 8th international conference on software engineering and service science 2017 (pp. 87-90). IEEE.
[Crossref] [Google Scholar]
[51]Hammi B, Khatoun R, Zeadally S, Fayad A, Khoukhi L. IoT technologies for smart cities. IET Networks. 2018; 7(1):1-3.
[Crossref] [Google Scholar]
[52]Marinakis V, Doukas H. An advanced IoT-based system for intelligent energy management in buildings. Sensors. 2018; 18(2):1-16.
[Crossref] [Google Scholar]
[53]Paul A, Chilamkurti N, Daniel A, Rho S. Chapter 8-big data collision analysis framework. Intelligent Vehicular Networks and Communications. 2017: 177-84.
[Google Scholar]
[54]Distefano S, Merlino G, Puliafito A, Cerotti D, Dautov R. Crowdsourcing and stigmergic approaches for (Swarm) intelligent transportation systems. In human centered computing: third international conference, HCC 2017, Kazan, Russia, Revised Selected Papers 3 2018 (pp. 616-26). Springer International Publishing.
[Crossref] [Google Scholar]
[55]Zantalis F, Koulouras G, Karabetsos S, Kandris D. A review of machine learning and IoT in smart transportation. Future Internet. 2019; 11(4):1-23.
[Crossref] [Google Scholar]
[56]Chowdhury DN, Agarwal N, Laha AB, Mukherjee A. A vehicle-to-vehicle communication system using IoT approach. In second international conference on electronics, communication and aerospace technology 2018 (pp. 915-9). IEEE.
[Crossref] [Google Scholar]
[57]Geetha S, Cicilia D. IoT enabled intelligent bus transportation system. In 2nd international conference on communication and electronics systems 2017 (pp. 7-11). IEEE.
[Crossref] [Google Scholar]
[58]Hasan N, Alam M. Envisaging industrial perspective demand response using machine learning. In proceedings of data analytics and management: ICDAM 2021, 2022 (pp. 331-42). Springer Singapore.
[Crossref] [Google Scholar]
[59]Nausicaa J. Smart street lighting system using IoT and cloud computing. International Journal for Research in Applied Science & Engineering Technology. 2021; 9(6):5014-18.
[60]Ryder B, Wortmann F. Autonomously detecting and classifying traffic accident hotspots. In proceedings of the international joint conference on pervasive and ubiquitous computing and proceedings, international symposium on wearable computers 2017 (pp. 365-70). ACM.
[Crossref] [Google Scholar]
[61]Rani P, Kumar R, Jain A, Lamba R. Taxonomy of machine learning algorithms and its applications. Journal of Computational and Theoretical Nanoscience. 2020; 17(6):2508-13.
[Crossref] [Google Scholar]
[62]Berrar D. Bayes theorem and naive Bayes classifier. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics. 2018; 403:412.
[Google Scholar]
[63]Setiawan B, Djanali S, Ahmad T. A study on intrusion detection using centroid-based classification. Procedia Computer Science. 2017; 124:672-81.
[Crossref] [Google Scholar]
[64]Sun W, Liu J, Yue Y. AI-enhanced offloading in edge computing: when machine learning meets industrial IoT. IEEE Network. 2019; 33(5):68-74.
[Crossref] [Google Scholar]
[65]Hussain T, Muhammad K, Del SJ, Baik SW, De AVH. Intelligent embedded vision for summarization of multiview videos in IIoT. IEEE Transactions on Industrial Informatics. 2019; 16(4):2592-602.
[Crossref] [Google Scholar]
[66]Oracevic A, Dilek S, Ozdemir S. Security in internet of things: a survey. In international symposium on networks, computers and communications 2017 (pp. 1-6). IEEE.
[Crossref] [Google Scholar]
[67]Patel KK, Patel SM, Scholar P. Internet of things-IOT: definition, characteristics, architecture, enabling technologies, application & future challenges. International Journal of Engineering Science and Computing. 2016; 6(5):6122-31.
[Google Scholar]
[68]Udoh IS, Kotonya G. Developing IoT applications: challenges and frameworks. IET Cyber‐Physical Systems: Theory & Applications. 2018; 3(2):65-72.
[Crossref] [Google Scholar]
[69]Mahdavinejad MS, Rezvan M, Barekatain M, Adibi P, Barnaghi P, Sheth AP. Machine learning for internet of things data analysis: a survey. Digital Communications and Networks. 2018; 4(3):161-75.
[Crossref] [Google Scholar]
[70]Rahman A, Chakraborty C, Anwar A, Karim MR, Islam MJ, Kundu D, et al. SDN–IoT empowered intelligent framework for industry 4.0 applications during COVID-19 pandemic. Cluster Computing. 2021:1-8.
[Crossref] [Google Scholar]
[71]Li J, Jin J, Lyu L, Yuan D, Yang Y, Gao L, et al. A fast and scalable authentication scheme in IOT for smart living. Future Generation Computer Systems. 2021; 117:125-37.
[Crossref] [Google Scholar]
[72]Ray PP, Dash D, De D. Edge computing for internet of things: a survey, e-healthcare case study and future direction. Journal of Network and Computer Applications. 2019; 140:1-22.
[Crossref] [Google Scholar]
[73]Che F, Ahmed A, Ahmed QZ, Zaidi SA, Shakir MZ. Machine learning based approach for indoor localization using ultra-wide bandwidth (UWB) system for industrial internet of things (IIoT). In international conference on UK-China emerging technologies 2020 (pp. 1-4). IEEE.
[Crossref] [Google Scholar]
[74]Liu X, Yu W, Liang F, Griffith D, Golmie N. Toward deep transfer learning in industrial internet of things. IEEE Internet of Things Journal. 2021; 8(15):12163-75.
[Crossref] [Google Scholar]
[75]Mateo FW, Redchuk A. The emergence of new business and operating models under the industrial digital paradigm. industrial internet of things, platforms, and artificial intelligence. machine learning. Journal of Mechanics Engineering and Automation. 2021; 11(2):54-60.
[Crossref] [Google Scholar]
[76]Liu M, Yu FR, Teng Y, Leung VC, Song M. Performance optimization for blockchain-enabled industrial Internet of things (IIoT) systems: a deep reinforcement learning approach. IEEE Transactions on Industrial Informatics. 2019; 15(6):3559-70.
[Crossref] [Google Scholar]
[77]Rathee G, Ahmad F, Sandhu R, Kerrache CA, Azad MA. On the design and implementation of a secure blockchain-based hybrid framework for industrial internet-of-things. Information Processing & Management. 2021; 58(3):102526.
[Crossref] [Google Scholar]
[78]Christou IT, Kefalakis N, Zalonis A, Soldatos J. Predictive and explainable machine learning for industrial internet of things applications. In international conference on distributed computing in sensor systems 2020 (pp. 213-8). IEEE.
[Crossref] [Google Scholar]
[79]Velusamy N, Al-turjman F, Kumar R, Ramakrishnan J. A framework for task allocation in IoT-oriented industrial manufacturing systems. Computer Networks. 2021; 190:107971.
[Crossref] [Google Scholar]
[80]Ambika P. Machine learning and deep learning algorithms on the industrial internet of things (IIoT). Advances in Computers. 2020; 117(1):321-38.
[Crossref] [Google Scholar]
[81]Zhou H, She C, Deng Y, Dohler M, Nallanathan A. Machine learning for massive industrial internet of things. IEEE Wireless Communications. 2021; 28(4):81-7.
[Crossref] [Google Scholar]
[82]Qiu C, Yu FR, Yao H, Jiang C, Xu F, Zhao C. Blockchain-based software-defined industrial internet of things: a dueling deep ${Q} $-learning approach. IEEE Internet of Things Journal. 2018; 6(3):4627-39.
[Crossref] [Google Scholar]
[83]Luo X, Liu J, Zhang D, Chang X. A large-scale web QoS prediction scheme for the industrial internet of things based on a kernel machine learning algorithm. Computer Networks. 2016; 101:81-9.
[Crossref] [Google Scholar]
[84]Wang M, Xu CA, Lin Y, Lu Z, Sun J, Gui G. A distributed sensor system based on cloud-edge-end network for industrial internet of things. Future Internet. 2023; 15(5):1-17.
[Crossref] [Google Scholar]
[85]Yang T, Hao W, Yang Q, Wang W. Cloud-edge coordinated traffic anomaly detection for industrial cyber-physical systems. Expert Systems with Applications. 2023:120668.
[Crossref] [Google Scholar]
[86]Su W, Xu G, He Z, Machica IK, Quimno V, Du Y, et al. Cloud-edge computing-based ICICOS framework for industrial automation and artificial intelligence: a survey. Journal of Circuits, Systems and Computers. 2023:2350168.
[Crossref] [Google Scholar]
[87]Maurya M, Panigrahi I, Dash D, Malla C. Intelligent fault diagnostic system for rotating machinery based on IoT with cloud computing and artificial intelligence techniques: a review. Soft Computing. 2023:1-8.
[Crossref] [Google Scholar]
[88]Abid A, Jemili F, Korbaa O. Real-time data fusion for intrusion detection in industrial control systems based on cloud computing and big data techniques. Cluster Computing. 2023:1-22.
[Crossref] [Google Scholar]
[89]Lu Y, Yang L, Yang SX, Hua Q, Sangaiah AK, Guo T, et al. An intelligent deterministic scheduling method for ultralow latency communication in edge enabled industrial internet of things. IEEE Transactions on Industrial Informatics. 2022; 19(2):1756-67.
[Crossref] [Google Scholar]
[90]Le TT, Oktian YE, Kim H. XGBoost for imbalanced multiclass classification-based industrial internet of things intrusion detection systems. Sustainability. 2022; 14(14):1-21.
[Crossref] [Google Scholar]
[91]Anajemba JH, Iwendi C, Razzak I, Ansere JA, Okpalaoguchi IM. A counter-eavesdropping technique for optimized privacy of wireless industrial IoT communications. IEEE Transactions on Industrial Informatics. 2022; 18(9):6445-54.
[Crossref] [Google Scholar]
[92]Ren H, Anicic D, Runkler TA. Towards semantic management of on-device applications in industrial IoT. ACM Transactions on Internet Technology. 2022; 22(4):1-30.
[Crossref] [Google Scholar]
[93]Ahmed YA, Huda S, Al-rimy BA, Alharbi N, Saeed F, Ghaleb FA, et al. A weighted minimum redundancy maximum relevance technique for ransomware early detection in industrial IoT. Sustainability. 2022; 14(3):1-15.
[Crossref] [Google Scholar]
[94]Feng Y, Zhang W, Luo X, Zhang B. A consortium blockchain-based access control framework with dynamic orderer node selection for 5G-enabled industrial IoT. IEEE Transactions on Industrial Informatics. 2021; 18(4):2840-8.
[Crossref] [Google Scholar]
[95]Krishnan P, Jain K, Achuthan K, Buyya R. Software-defined security-by-contract for blockchain-enabled MUD-aware industrial IoT edge networks. IEEE Transactions on Industrial Informatics. 2021; 18(10):7068-76.
[Crossref] [Google Scholar]
[96]Khowaja SA, Khuwaja P. Q-learning and LSTM based deep active learning strategy for malware defense in industrial IoT applications. Multimedia Tools and Applications. 2021; 80(10):14637-63.
[Crossref] [Google Scholar]
[97]Khan AI, Al-badi A. Open source machine learning frameworks for industrial internet of things. Procedia Computer Science. 2020; 170:571-7.
[Crossref] [Google Scholar]