(Publisher of Peer Reviewed Open Access Journals)

International Journal of Advanced Computer Research (IJACR)

ISSN (Print):2249-7277    ISSN (Online):2277-7970
Volume-13 Issue-64 September-2023
Full-Text PDF
Paper Title : Automatic urban boundary delineation in equatorial regions using SAR imagery: a comprehensive approach with decomposition, morphology, and statistical active contours
Author Name : Fritz Elenda Nkomba, Timothée Kombe and Pierre Ele
Abstract :

In recent years, algorithms have been developed to decompose images into structural and textural components. Radar images, known for all-weather capabilities, prove increasingly valuable in equatorial regions with quasi-permanent cloud cover. As the African population undergoes rapid demographic growth, it becomes imperative to establish automatic mapping methods for radar images. This facilitates timely urban evolution studies within territorial jurisdictions. This paper presented an approach to delineate urban boundaries in synthetic aperture radar (SAR) images from European Remote Sensing Satellite (ERS)-1, focusing on Douala, Cameroon. Our method emphasizes detecting key features, including road networks, urban structures, inhabited areas, and wetlands, considering the unique granularity of SAR imagery. The decomposition technique was applied to road network detection in aerial or satellite imagery. The algorithmic chain employs a combination of textural image analysis and mathematical morphology, utilizing set theory for road network extraction from radar images and aerial photography. Additionally, linear structures are detected through mathematical morphology, followed by the refinement of extracted roads using statistical active contours. Applying wavelet transforms, filtering by rectangularity measure, histogram analysis, Canny contour detection, morphological operators, and watershed transformation demonstrated precise road detection, effectively distinguishing them from other objects. The algorithm proves efficient across urban, rural, and peri-urban contexts. For inhabited areas and wetlands, the algorithm adapts to higher gray levels associated with rooftops and accurately detects extremely low gray levels indicative of water bodies.

Keywords : Linear structures, Watershed lines, Mathematical morphology, Segmentation, Urban area, First order histogram, Wavelet filtering.
Cite this article : Nkomba FE, Kombe T, Ele P. Automatic urban boundary delineation in equatorial regions using SAR imagery: a comprehensive approach with decomposition, morphology, and statistical active contours. International Journal of Advanced Computer Research. 2023; 13(64):62-93. DOI:10.19101/IJACR.2023.1362004.
References :
[1]Gitas IZ, Polychronaki A, Katagis T, Mallinis G. Contribution of remote sensing to disaster management activities: a case study of the large fires in the Peloponnese, Greece. International Journal of Remote Sensing. 2008; 29(6):1847-53.
[Crossref] [Google Scholar]
[2]Rodriguez H, Quarantelli EL, Dynes RR, Thomas DS, Ertugay K, Kemec¸ S. The role of geographic information systems/remote sensing in disaster management. Handbook of Disaster Research. 2007:83-96.
[Crossref] [Google Scholar]
[3]Mohammadzadeh A, Tavakoli A, Valadan ZMJ. Road extraction based on fuzzy logic and mathematical morphology from pan‐sharpened IKONOS images. The Photogrammetric Record. 2006; 21(113):44-60.
[Crossref] [Google Scholar]
[4]Chaudhuri D, Kushwaha NK, Samal A. Semi-automated road detection from high resolution satellite images by directional morphological enhancement and segmentation techniques. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2012; 5(5):1538-44.
[Crossref] [Google Scholar]
[5]Jinxin C, Qixin S, Liguang S. A methodology for automatic detection and extraction of road edges from high resolution remote sensing images. In international conference on industrial technology 2006 (pp. 69-74). IEEE.
[Crossref] [Google Scholar]
[6]Sun J, Mao S. River detection algorithm in SAR images based on edge extraction and ridge tracing techniques. International Journal of Remote Sensing. 2011; 32(12):3485-94.
[Crossref] [Google Scholar]
[7]Mena JB, Malpica JA. An automatic method for road extraction in rural and semi-urban areas starting from high resolution satellite imagery. Pattern Recognition Letters. 2005; 26(9):1201-20.
[Crossref] [Google Scholar]
[8]Zhang R, Lin X. Automatic road extraction based on local histogram and support vector data description classifier from very high resolution digital aerial. In international geoscience and remote sensing symposium 2010 (pp. 441-4). IEEE.
[Crossref] [Google Scholar]
[9]Zhu H, Li C, Zhang L, Shen J. River channel extraction from SAR images by combining gray and morphological features. Circuits, Systems, and Signal Processing. 2015; 34:2271-86.
[Crossref] [Google Scholar]
[10]Herumurti D, Uchimura K, Koutaki G, Uemura T. Urban road extraction based on hough transform and region growing. In the 19th korea-japan joint workshop on frontiers of computer vision 2013 (pp. 220-4). IEEE.
[Crossref] [Google Scholar]
[11]Wei QR, Feng DZ. Extracting line features in SAR images through image edge fields. IEEE Geoscience and Remote Sensing Letters. 2016; 13(4):540-4.
[Crossref] [Google Scholar]
[12]Shackelford AK, Davis CH. Urban road network extraction from high-resolution multispectral data. In 2nd GRSS/ISPRS joint workshop on remote sensing and data fusion over urban areas 2003 (pp. 142-6). IEEE.
[Crossref] [Google Scholar]
[13]Naouai M, Hamouda A, Akkari A, Weber C. New approach for road extraction from high resolution remotely sensed images using the quaternionic wavelet. In pattern recognition and image analysis: 5th Iberian conference, Ib PRIA, las palmas de gran canaria, spain 2011 (pp. 452-9). Springer Berlin Heidelberg.
[Crossref] [Google Scholar]
[14]Begni G, Escafadal R, Fontannaz D, Hong-nga NAT. Remote sensing: a tool for monitoring and assessing desertification, CSFD, 2005; 1-48.
[Google Scholar]
[15]Emran A. Landsat global data on Africa, an example: tracking the spatio-temporal evolution of the city of Rabat in Morocco. In seminars of the United Nations program on space applications. United Nations, New York, 2006 (pp. 15-24). NASA Astrophysics Data System.
[Google Scholar]
[16]Pouyllau M. Remote sensing and the third world Methodologies, practices, new fields and new issues. CNRS editions, Paris; 1991.
[17]Tonyé E, Akono A, Nyoungui AN, Assako RJ. Extraction of the road network on an ERS-2 SAR image and on an HRV (XS) SPOT image by texture analysis and mathematical morphology: application to the city of Yaoundé (Cameroon). Remote sensing in the French-speaking world: critical analysis and perspectives. Ed. AUPELF UREF. 2000:95-103.
[Google Scholar]
[18]Coster M, Chermant JL. Précis danalyse d images. Presses du CNRS, Paris; 1989.
[Google Scholar]
[19]Schmitt M, Mattioli J. Morphologie mathématique. Presses des MINES; 2013.
[Google Scholar]
[20]Najman L, Talbot H. Mathematical morphology: from theory to applications. John Wiley & Sons; 2013.
[Google Scholar]
[21]Kombe T, Assako RJ. Mathematical morphology applied to rso images for the differentiation of urban fabrics: case of the city of Douala (Cameroon). Remote Sensing Review. 2007; 7(1-2):3-4.
[Google Scholar]
[22]Nicolas G, Denis L, Tupin F. Detection of line structures in synthetic aperture radar images by generalized likelihood ratio test. In CAP-RFIAP. 2020:1-7.
[Google Scholar]
[23]Tupin F, Gouinaud C, Maitre H, Cretez JP. Detection of the road network on ERS 1 radar images. RFIA AFCET 96 (Rennes). 1996; 43:52.
[Google Scholar]
[24]MaIrte H. A panorama of the hough transform. Signal Processing. 1985; 2(4).
[Google Scholar]
[25]Poncelet N, Cornet Y. Hough transform and lineament detection on satellite images and digital terrain models. Bulletin of the Geographical Society of Liège. 2010; 145-56.
[Google Scholar]
[26]Tupin F, Trouve E, Descombes X, Nicolas JM, Maitre H. Improving IFSAR phase unwrapping by early detection of noninterferometric features. In microwave sensing and synthetic aperture radar 1996 (pp. 250-61). SPIE.
[Crossref] [Google Scholar]
[27]Kombe T, Assato RA. Mathematical morphology applied to SAR images for the detection of urban areas: the case study of the city of Douala. Revue Télédétection. 2007; 7(1-2):3-4.
[Google Scholar]
[28]Lacoste C. Extraction de reseaux lineiques a partir dimages satellitaires et aeriennes par processus ponctuels marques (Doctoral dissertation, Universite Nice Sophia Antipolis). 2004.
[Google Scholar]
[29]Zhang X, Ma W, Li C, Wu J, Tang X, Jiao L. Fully convolutional network-based ensemble method for road extraction from aerial images. IEEE Geoscience and Remote Sensing Letters. 2019; 17(10):1777-81.
[Crossref] [Google Scholar]
[30]Li P, He X, Qiao M, Cheng X, Li Z, Luo H, et al. Robust deep neural networks for road extraction from remote sensing images. IEEE Transactions on Geoscience and Remote Sensing. 2020; 59(7):6182-97.
[Crossref] [Google Scholar]
[31]Li P, He X, Qiao M, Cheng X, Li J, Guo X, et al. Exploring label probability sequence to robustly learn deep convolutional neural networks for road extraction with noisy datasets. IEEE Transactions on Geoscience and Remote Sensing. 2021; 60:1-8.
[Crossref] [Google Scholar]
[32]Yang K, Yi J, Chen A, Liu J, Chen W. ConDinet++: full-scale fusion network based on conditional dilated convolution to extract roads from remote sensing images. IEEE Geoscience and Remote Sensing Letters. 2021; 19:1-5.
[Crossref] [Google Scholar]
[33]Tan X, Xiao Z, Wan Q, Shao W. Scale sensitive neural network for road segmentation in high-resolution remote sensing images. IEEE Geoscience and Remote Sensing Letters. 2020; 18(3):533-7.
[Crossref] [Google Scholar]
[34]Zhu Q, Zhang Y, Wang L, Zhong Y, Guan Q, Lu X, et al. A global context-aware and batch-independent network for road extraction from VHR satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing. 2021; 175:353-65.
[Crossref] [Google Scholar]
[35]Wu Q, Luo F, Wu P, Wang B, Yang H, Wu Y. Automatic road extraction from high-resolution remote sensing images using a method based on densely connected spatial feature-enhanced pyramid. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2020; 14:3-17.
[Crossref] [Google Scholar]
[36]Zhou M, Sui H, Chen S, Wang J, Chen X. BT-RoadNet: a boundary and topologically-aware neural network for road extraction from high-resolution remote sensing imagery. ISPRS Journal of Photogrammetry and Remote Sensing. 2020; 168:288-306.
[Crossref] [Google Scholar]
[37]Wu Z, Zhang J, Zhang L, Liu X, Qiao H. Bi-HRNet: a road extraction framework from satellite imagery based on node heatmap and bidirectional connectivity. Remote Sensing. 2022; 14(7):1732.
[Crossref] [Google Scholar]
[38]Yang Z, Zhou D, Yang Y, Zhang J, Chen Z. TransRoadNet: a novel road extraction method for remote sensing images via combining high-level semantic feature and context. IEEE Geoscience and Remote Sensing Letters. 2022; 19:1-5.
[Crossref] [Google Scholar]
[39]Chen SB, Ji YX, Tang J, Luo B, Wang WQ, Lv K. DBRANet: road extraction by dual-branch encoder and regional attention decoder. IEEE Geoscience and Remote Sensing Letters. 2021; 19:1-5.
[Crossref] [Google Scholar]
[40]Dong S, Chen Z. Block multi-dimensional attention for road segmentation in remote sensing imagery. IEEE Geoscience and Remote Sensing Letters. 2021; 19:1-5.
[Crossref] [Google Scholar]
[41]Liu Z, Wang M, Wang F, Ji X. A residual attention and local context-aware network for road extraction from high-resolution remote sensing imagery. Remote Sensing. 2021; 13(24):1-20.
[Google Scholar]
[42]Hu A, Chen S, Wu L, Xie Z, Qiu Q, Xu Y. WSGAN: an improved generative adversarial network for remote sensing image road network extraction by weakly supervised processing. Remote Sensing. 2021; 13(13):1-18.
[Crossref] [Google Scholar]
[43]Yang C, Wang Z. An ensemble Wasserstein generative adversarial network method for road extraction from high resolution remote sensing images in rural areas. IEEE Access. 2020; 8:174317-24.
[Crossref] [Google Scholar]
[44]Abdollahi A, Pradhan B, Sharma G, Maulud KN, Alamri A. Improving road semantic segmentation using generative adversarial network. IEEE Access. 2021; 9:64381-92.
[Crossref] [Google Scholar]
[45]Shamsolmoali P, Zareapoor M, Zhou H, Wang R, Yang J. Road segmentation for remote sensing images using adversarial spatial pyramid networks. IEEE Transactions on Geoscience and Remote Sensing. 2020; 59(6):4673-88.
[Crossref] [Google Scholar]
[46]Zhang L, Lan M, Zhang J, Tao D. Stagewise unsupervised domain adaptation with adversarial self-training for road segmentation of remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing. 2021; 60:1-3.
[Crossref] [Google Scholar]
[47]Wei Y, Ji S. Scribble-based weakly supervised deep learning for road surface extraction from remote sensing images. IEEE Transactions on Geoscience and Remote Sensing. 2021; 60:1-2.
[Crossref] [Google Scholar]
[48]Ren Y, Yu Y, Guan H. DA-CapsUNet: a dual-attention capsule U-Net for road extraction from remote sensing imagery. Remote Sensing. 2020; 12(18):1-17.
[Crossref] [Google Scholar]
[49]Shao S, Xiao L, Lin L, Ren C, Tian J. Road extraction convolutional neural network with embedded attention mechanism for remote sensing imagery. Remote Sensing. 2022; 14(9):1-18.
[Crossref] [Google Scholar]
[50]Li P, He X, Qiao M, Miao D, Cheng X, Song D, et al. Exploring multiple crowdsourced data to learn deep convolutional neural networks for road extraction. International Journal of Applied Earth Observation and Geoinformation. 2021; 104:102544.
[Crossref] [Google Scholar]
[51]Lin Y, Wan L, Zhang H, Wei S, Ma P, Li Y, et al. Leveraging optical and SAR data with a UU-Net for large-scale road extraction. International Journal of Applied Earth Observation and Geoinformation. 2021; 103:102498.
[Crossref] [Google Scholar]
[52]Zhang J, Hu Q, Li J, Ai M. Learning from GPS trajectories of floating car for CNN-based urban road extraction with high-resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing. 2020; 59(3):1836-47.
[Crossref] [Google Scholar]
[53]Girard MC, Girard CM. Télédétection appliquée. Zones tempérées intertropicales [Applied remote sensing in intertropical temperate zones]. Partie pédologie. 1989:192-233.
[Google Scholar]
[54]Wang L. Un nouvel espace de texture. International Journal of Remote Sensing. 1994; 15(8):1713-23.
[Crossref] [Google Scholar]
[55]Cocquerez JP, Philipp S, Bolon P, Chassery JM, Demigny D, Graffigne C, et al. Analyse dimages: filtrage et segmentation. Masson; 1995.
[Google Scholar]
[56]Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis & Machine Intelligence. 1991; 13(06):583-98.
[Google Scholar]
[57]Zheng C, Yao H. Segmentation for remote-sensing imagery using the object-based Gaussian-Markov random field model with region coefficients. International Journal of Remote Sensing. 2019; 40(11):4441-72.
[Crossref] [Google Scholar]
[58]https://theses-algerie.com/2803423358558140/memoire-de-magister/universite-abou-bekr-belkaid---tlemcen/extraction-de-r%C3%A9seaux-lin%C3%A9iques-%C3%A0-partir-des-images-%C3%A0-hauter%C3%A9solution. Accessed 10 July 2023.
[59]Risson V. Application de la morphologie mathématique à lanalyse des conditions déclairage des images couleur (Doctoral dissertation, École Nationale Supérieure des Mines de Paris). 2001.
[Google Scholar]
[60]Beucher S. Segmentation dimages et morphologie mathématique (Doctoral dissertation, Ecole Nationale Supérieure des Mines de Paris). 1990.
[Google Scholar]
[61]Attia D. Segmentation dimages par combinaison adaptative couleur-texture et classification de pixels.: applications à la caractérisation de lenvironnement de réception de signaux GNSS (Doctoral dissertation, Université de Technologie de Belfort-Montbeliard). 2013.
[Google Scholar]
[62]Strauss O, Comby F. Fuzzy morphological operations with variable kernels for omnidirectional single-viewpoint images. Signal Processing. 2005; 22(5):1-23.
[Google Scholar]