(Publisher of Peer Reviewed Open Access Journals)

International Journal of Advanced Technology and Engineering Exploration (IJATEE)

ISSN (Print):2394-5443    ISSN (Online):2394-7454
Volume-9 Issue-95 October-2022
Full-Text PDF
Paper Title : Review and analysis of the effect of variables on aluminium based surface composite fabricated through friction stir processing method
Author Name : Abdul Jabbar Ansari and Mohd. Anas
Abstract :

Friction stir processing (FSP) is a remarkable technique to create metal matrix composites (MMCs). FSP can be used to produce MMCs of different materials like aluminium, copper, magnesium, steel etc. Due to the excellent mechanical properties like higher strength to weight ratio, higher corrosion resistance and lighter weight density brand aluminium as a material of choice for different structural application in different industries like defense, marine, automobile and aircraft. Many researchers have found that the microstructure as well as mechanical properties of aluminium can be altered through reinforcing particles like SiC, TiC, Al2O3, etc. Microstructure, mechanical and wear properties of aluminium base material can also be altered by modifying different variables involved in FSP. This paper is a state of art review of consequences of different variables of FSP on mechanical properties of aluminium metal matrix composites (AMMCs) fabricated through the FSP method. This review article will also provide the future research direction for aluminium as a base metal.

Keywords : Aluminium metal matrix composite, Friction stir processing, Surface composite, Parameters of friction stir processing.
Cite this article : Ansari AJ, Anas M. Review and analysis of the effect of variables on aluminium based surface composite fabricated through friction stir processing method. International Journal of Advanced Technology and Engineering Exploration. 2022; 9(95):1552-1570. DOI:10.19101/IJATEE.2021.875903.
References :
[1]Mavhungu ST, Akinlabi ET, Onitiri MA, Varachia FM. Aluminum matrix composites for industrial use: advances and trends. Procedia Manufacturing. 2017; 7:178-82.
[Crossref] [Google Scholar]
[2]Prasad DS, Krishna AR. Tribological properties of A356. 2/RHA composites. Journal of Materials Science & Technology. 2012; 28(4):367-72.
[Crossref] [Google Scholar]
[3]Gladston JA, Dinaharan I, Sheriff NM, Selvam JD. Dry sliding wear behavior of AA6061 aluminum alloy composites reinforced rice husk ash particulates produced using compocasting. Journal of Asian Ceramic Societies. 2017; 5(2):127-35.
[Crossref] [Google Scholar]
[4]Qu J, An L, Blau PJ. Sliding friction and wear characteristics of Al2O3-Al nanocomposites. In international joint tribology conference 2006 (pp. 59-60).
[Crossref] [Google Scholar]
[5]Gupta M, Mohamed FA, Lavernia EJ. Solidification behavior of AI-Li-SiCp MMCs processed using variable co-deposition of multi-phase materials. Material and Manufacturing Process. 1990; 5(2):165-96.
[Crossref] [Google Scholar]
[6]Zheng Y, Hu Q, Li C, Wang D, Meng L, Luo J, et al. A novel laser surface compositing by selective laser quenching to enhance railway service life. Tribology International. 2017; 106:46-54.
[Crossref] [Google Scholar]
[7]Shaik D, Sudhakar I, Bharat GC, Varshini V, Vikas S. Tribological behavior of friction stir processed AA6061 aluminium alloy. Materials Today: Proceedings. 2021; 44:860-4.
[Crossref] [Google Scholar]
[8]Hosseinzadeh A, Yapici GG. High temperature characteristics of Al2024/SiC metal matrix composite fabricated by friction stir processing. Materials Science and Engineering: A. 2018; 731:487-94.
[Crossref] [Google Scholar]
[9]Tyagi L, Butola R, Jha AK. Mechanical and tribological properties of AA7075-T6 metal matrix composite reinforced with ceramic particles and aloevera ash via friction stir processing. Materials Research Express. 2020; 7(6):1-13.
[Crossref] [Google Scholar]
[10]Srivastava AK, Maurya NK, Maurya M, Dwivedi SP, Saxena A. Effect of multiple passes on microstructural and mechanical properties of surface composite Al 2024/SiC produced by friction stir processing. In annales de chimie-science des matériaux 2020 (pp. 421-6).
[Google Scholar]
[11]Kumar H, Prasad R, Kumar P, Tewari SP, Singh JK. Mechanical and tribological characterization of industrial wastes reinforced aluminum alloy composites fabricated via friction stir processing. Journal of Alloys and Compounds. 2020.
[Crossref] [Google Scholar]
[12]Huang G, Hou W, Shen Y. Evaluation of the microstructure and mechanical properties of WC particle reinforced aluminum matrix composites fabricated by friction stir processing. Materials Characterization. 2018; 138:26-37.
[Crossref] [Google Scholar]
[13]Tang J, Shen Y, Li J. Influences of friction stir processing parameters on microstructure and mechanical properties of SiC/Al composites fabricated by multi-pin tool. Journal of Manufacturing Processes. 2019; 38:279-89.
[Crossref] [Google Scholar]
[14]Liu Z, Cai Y, Chen J, Han J, Mao Z, Chen M. Fabrication and characterization of friction stir–processed Mg-Zn-Ca biomaterials strengthened with MgO particles. The International Journal of Advanced Manufacturing Technology. 2021; 117(3):919-32.
[Crossref] [Google Scholar]
[15]Yang K, Li W, Niu P, Yang X, Xu Y. Cold sprayed AA2024/Al2O3 metal matrix composites improved by friction stir processing: microstructure characterization, mechanical performance and strengthening mechanisms. Journal of Alloys and Compounds. 2018; 736:115-23.
[Crossref] [Google Scholar]
[16]Patel SK, Singh VP, Roy BS, Kuriachen B. Microstructural, mechanical and wear behavior of A7075 surface composite reinforced with WC and ZrSiO4 nanoparticle through friction stir processing. Journal of Manufacturing Processes. 2021; 71:85-105.
[Crossref] [Google Scholar]
[17]Moustafa EB, Melaibari A, Alsoruji G, Khalil AM, Mosleh AO. Tribological and mechanical characteristics of AA5083 alloy reinforced by hybridising heavy ceramic particles Ta2C & VC with light GNP and Al2O3 nanoparticles. Ceramics International. 2022; 48(4):4710-21.
[Crossref] [Google Scholar]
[18]Moustafa E. Effect of multi-pass friction stir processing on mechanical properties for AA2024/Al2O3 nanocomposites. Materials. 2017; 10(9):1-17.
[Crossref] [Google Scholar]
[19]Hayat MD, Singh H, He Z, Cao P. Titanium metal matrix composites: An overview. Composites Part A: Applied Science and Manufacturing. 2019; 121:418-38.
[Crossref] [Google Scholar]
[20]Ali LF, Kuppuswamy N, Soundararajan R, Ramkumar KR, Sivasankaran S. Microstructural evolutions and mechanical properties enhancement of AA 6063 alloy reinforced with Tungsten (W) nanoparticles processed by friction stir processing. Materials Characterization. 2021.
[Crossref] [Google Scholar]
[21]Rokkala U, Bontha S, Ramesh MR, Balla VK, Srinivasan A, Kailas SV. Tailoring surface characteristics of bioabsorbable Mg-Zn-Dy alloy using friction stir processing for improved wettability and degradation behavior. Journal of Materials Research and Technology. 2021; 12:1530-42.
[Crossref] [Google Scholar]
[22]Mishra RS, Mahoney MW, McFadden SX, Mara NA, Mukherjee AK. High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scripta Materialia. 1999; 42(2):163-8.
[Crossref] [Google Scholar]
[23]Barmouz M, Givi MK, Seyfi J. On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: investigating microstructure, microhardness, wear and tensile behavior. Materials Characterization. 2011; 62(1):108-17.
[Crossref] [Google Scholar]
[24]Dehghani K, Mazinani M. Forming nanocrystalline surface layers in copper using friction stir processing. Materials and Manufacturing Processes. 2011; 26(7):922-5.
[Crossref] [Google Scholar]
[25]Dadashpour M, Mostafapour A, Yeşildal R, Rouhi S. Effect of process parameter on mechanical properties and fracture behavior of AZ91C/SiO2 composite fabricated by FSP. Materials Science and Engineering: A. 2016; 655:379-87.
[Crossref] [Google Scholar]
[26]Shamsipur A, Kashani-bozorg SF, Zarei-hanzaki A. The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer. Surface and Coatings Technology. 2011; 206(6):1372-81.
[Crossref] [Google Scholar]
[27]Ghasemi-Kahrizsangi A, Kashani-Bozorg SF. Microstructure and mechanical properties of steel/TiC nano-composite surface layer produced by friction stir processing. Surface and Coatings Technology. 2012; 209:15-22.
[Crossref] [Google Scholar]
[28]Ghasemi-kahrizsangi A, Kashani-bozorg SF, Moshref-javadi M, Sharififar M. Friction stir processing of mild steel/Al2O3 nanocomposite: modeling and experimental studies. Metallography, Microstructure, and Analysis. 2015; 4(2):122-30.
[Crossref] [Google Scholar]
[29]Khodabakhshi F, Simchi A, Kokabi AH, Nosko M, Simanĉik F, Švec P. Microstructure and texture development during friction stir processing of Al–Mg alloy sheets with TiO2 nanoparticles. Materials Science and Engineering: A. 2014; 605:108-18.
[Crossref] [Google Scholar]
[30]Kishan V, Devaraju A, Lakshmi KP. Influence of volume percentage of NanoTiB2 particles on tribological & mechanical behaviour of 6061-T6 Al alloy nano-surface composite layer prepared via friction stir process. Defence Technology. 2017; 13(1):16-21.
[Crossref] [Google Scholar]
[31]Narimani M, Lotfi B, Sadeghian Z. Evaluation of the microstructure and wear behaviour of AA6063-B4C/TiB2 mono and hybrid composite layers produced by friction stir processing. Surface and Coatings Technology. 2016; 285:1-10.
[Crossref] [Google Scholar]
[32]Maurya R, Kumar B, Ariharan S, Ramkumar J, Balani K. Effect of carbonaceous reinforcements on the mechanical and tribological properties of friction stir processed Al6061 alloy. Materials & Design. 2016; 98:155-66.
[Crossref] [Google Scholar]
[33]Liu Q, Ke L, Liu F, Huang C, Xing L. Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing. Materials & Design. 2013; 45:343-8.
[Crossref] [Google Scholar]
[34]Sharma A, Bandari V, Ito K, Kohama K, Ramji M, BV HS. A new process for design and manufacture of tailor-made functionally graded composites through friction stir additive manufacturing. Journal of Manufacturing Processes. 2017; 26:122-30.
[Crossref] [Google Scholar]
[35]Khan M, Rehman A, Aziz T, Naveed K, Ahmad I, Subhani T. Cold formability of friction stir processed aluminum composites containing carbon nanotubes and boron carbide particles. Materials Science and Engineering: A. 2017; 701:382-8.
[Crossref] [Google Scholar]
[36]Guo JF, Liu J, Sun CN, Maleksaeedi S, Bi G, Tan MJ, Wei J. Effects of nano-Al2O3 particle addition on grain structure evolution and mechanical behaviour of friction-stir-processed Al. Materials Science and Engineering: A. 2014; 602:143-9.
[Crossref] [Google Scholar]
[37]Ni DR, Wang JJ, Zhou ZN, Ma ZY. Fabrication and mechanical properties of bulk NiTip/Al composites prepared by friction stir processing. Journal of Alloys and Compounds. 2014; 586:368-74.
[Crossref] [Google Scholar]
[38]Miranda RM, Santos TG, Gandra J, Lopes N, Silva RJ. Reinforcement strategies for producing functionally graded materials by friction stir processing in aluminium alloys. Journal of Materials Processing Technology. 2013; 213(9):1609-15.
[Crossref] [Google Scholar]
[39]Johannes LB, Charit I, Mishra RS, Verma R. Enhanced superplasticity through friction stir processing in continuous cast AA5083 aluminum. Materials Science and Engineering: A. 2007; 464(1-2):351-7.
[Crossref] [Google Scholar]
[40]Liu FC, Ma ZY. Achieving exceptionally high superplasticity at high strain rates in a micrograined Al–Mg–Sc alloy produced by friction stir processing. Scripta Materialia. 2008; 59(8):882-5.
[Crossref] [Google Scholar]
[41]Alpas AT, Zhang J. Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites. Metallurgical and Materials Transactions A. 1994; 25(5):969-83.
[Google Scholar]
[42]Sannino AP, Rack HJ. Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion. Wear. 1995; 189(1-2):1-19.
[Crossref] [Google Scholar]
[43]Eftekharinia H, Amadeh AA, Khodabandeh A, Paidar M. Microstructure and wear behavior of AA6061/SiC surface composite fabricated via friction stir processing with different pins and passes. Rare Metals. 2020; 39(4):429-35.
[Crossref] [Google Scholar]
[44]Rathee S, Maheshwari S, Siddiquee AN, Srivastava M. Effect of tool plunge depth on reinforcement particles distribution in surface composite fabrication via friction stir processing. Defence Technology. 2017; 13(2):86-91.
[Crossref] [Google Scholar]
[45]Rathee S, Maheshwari S, Siddiquee AN, Srivastava M. Investigating the effects of SiC particle sizes on microstructural and mechanical properties of AA5059/SiC surface composites during multi-pass FSP. Silicon. 2019; 11(2):797-805.
[Crossref] [Google Scholar]
[46]Rathee S, Maheshwari S, Siddiquee AN, Srivastava M. Investigating effects of groove dimensions on microstructure and mechanical properties of AA6063/SiC surface composites produced by friction stir processing. Transactions of the Indian Institute of Metals. 2017; 70(3):809-16.
[Crossref] [Google Scholar]
[47]Rathee S, Maheshwari S, Siddiquee AN, Srivastava M. Distribution of reinforcement particles in surface composite fabrication via friction stir processing: suitable strategy. Materials and Manufacturing Processes. 2018; 33(3):262-9.
[Crossref] [Google Scholar]
[48]Bikkina V, Talasila SR, Adepu K. Characterization of aluminum based functionally graded composites developed via friction stir processing. Transactions of Nonferrous Metals Society of China. 2020; 30(7):1743-55.
[Crossref] [Google Scholar]
[49]Bauri R, Yadav D, Suhas G. Effect of friction stir processing (FSP) on microstructure and properties of Al–TiC in situ composite. Materials Science and Engineering: A. 2011; 528(13-14):4732-9.
[Crossref] [Google Scholar]
[50]Jerome S, Bhalchandra SG, Babu SK, Ravisankar B. Influence of microstructure and experimental parameters on mechanical and wear properties of Al-TiC surface composite by FSP route. Journal of minerals and materials characterization and Engineering. 2012; 11(5):493-507.
[Google Scholar]
[51]Akinlabi ET, Mahamood RM, Akinlabi SA, Ogunmuyiwa E. Processing parameters influence on wear resistance behaviour of friction stir processed Al-TiC composites. Advances in Materials Science and Engineering. 2014.
[Crossref] [Google Scholar]
[52]Thangarasu A, Murugan N, Dinaharan I, Vijay SJ. Synthesis and characterization of titanium carbide particulate reinforced AA6082 aluminium alloy composites via friction stir processing. Archives of Civil and Mechanical Engineering. 2015; 15(2):324-34.
[Crossref] [Google Scholar]
[53]Yuvaraj N, Aravindan S. Wear characteristics of Al5083 surface hybrid nano-composites by friction stir processing. Transactions of the Indian Institute of Metals. 2017; 70(4):1111-29.
[Crossref] [Google Scholar]
[54]Sanusi KO, Akinlabi ET. Friction-stir processing of a composite aluminium alloy (AA 1050) reinforced with titanium carbide powder. Materiali in Tehnologije. 2017; 51(3):427-35.
[Google Scholar]
[55]Shiva A, Cheepu M, Kantumuchu VC, Kumar KR, Venkateswarlu D, Srinivas B, et al. Microstructure characterization of Al-TiC surface composite fabricated by friction stir processing. In IOP conference series: materials science and engineering 2018 (pp. 1-10). IOP Publishing.
[Crossref] [Google Scholar]
[56]Fotoohi H, Lotfi B, Sadeghian Z, Byeon JW. Microstructural characterization and properties of in situ Al-Al3Ni/TiC hybrid composite fabricated by friction stir processing using reactive powder. Materials Characterization. 2019; 149:124-32.
[Crossref] [Google Scholar]
[57]Dinaharan I, Murugan N. Influence of friction stir welding parameters on sliding wear behavior of AA6061/0-10 wt.% ZrB 2 in-situ composite butt joints. Journal of Minerals and Materials Characterization and Engineering. 2011; 10(14):1359-77.
[Google Scholar]
[58]You GL, Ho NJ, Kao PW. In-situ formation of Al2O3 nanoparticles during friction stir processing of AlSiO2 composite. Materials Characterization. 2013; 80:1-8.
[Crossref] [Google Scholar]
[59]Khodabakhshi F, Simchi A, Kokabi AH, Gerlich AP, Nosko M. Effects of post-annealing on the microstructure and mechanical properties of friction stir processed Al–Mg–TiO2 nanocomposites. Materials & Design. 2014; 63:30-41.
[Crossref] [Google Scholar]
[60]Cavaliere P, De Santis A, Panella F, Squillace A. Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding. Materials & Design. 2009; 30(3):609-16.
[Crossref] [Google Scholar]
[61]Cavaliere P, Squillace A. Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082-AA2024 joints produced by friction stir welding. In materials science forum 2006 (pp. 1163-8). Trans Tech Publications Ltd.
[Google Scholar]
[62]Hashemi R, Hussain G. Wear performance of Al/TiN dispersion strengthened surface composite produced through friction stir process: a comparison of tool geometries and number of passes. Wear. 2015; 324:45-54.
[Crossref] [Google Scholar]
[63]Salehi M, Saadatmand M, Mohandesi JA. Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing. Transactions of Nonferrous Metals Society of China. 2012; 22(5):1055-63.
[Crossref] [Google Scholar]
[64]Lee IS, Hsu CJ, Chen CF, Ho NJ, Kao PW. Particle-reinforced aluminum matrix composites produced from powder mixtures via friction stir processing. Composites Science and Technology. 2011; 71(5):693-8.
[Crossref] [Google Scholar]
[65]Shafiei-zarghani A, Kashani-bozorg SF, Zarei-hanzaki A. Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Materials Science and Engineering: A. 2009; 500(1-2):84-91.
[Crossref] [Google Scholar]
[66]Chen CF, Kao PW, Chang LW, Ho NJ. Effect of processing parameters on microstructure and mechanical properties of an Al-Al11Ce3-Al2O3 in-situ composite produced by friction stir processing. Metallurgical and Materials Transactions A. 2010; 41(2):513-22.
[Crossref] [Google Scholar]
[67]Rana HG, Badheka VJ, Kumar A. Fabrication of Al7075/B4C surface composite by novel friction stir processing (FSP) and investigation on wear properties. Procedia Technology. 2016; 23:519-28.
[Crossref] [Google Scholar]
[68]Devaraju A, Kumar A, Kotiveerachari B. Influence of rotational speed and reinforcements on wear and mechanical properties of aluminum hybrid composites via friction stir processing. Materials & Design. 2013; 45:576-85.
[Crossref] [Google Scholar]
[69]Jamali A, Mirsalehi SE. Production of AA7075/ZrO2 nanocomposite using friction stir processing: Metallurgical structure, mechanical properties and wear behavior. CIRP Journal of Manufacturing Science and Technology. 2022; 37:55-69.
[Crossref] [Google Scholar]
[70]Murthy V, Kumar SD, Saju KK, Rajaprakash BM, Rajashekar R. Optimization of friction stir processing parameters for manufacturing silicon carbide reinforced aluminum 7075-T651 surface composite. Materials Today: Proceedings. 2019; 18:4549-55.
[Crossref] [Google Scholar]
[71]Ande R, Gulati P, Shukla DK, Dhingra H. Microstructural and wear characteristics of friction stir processed Al-7075/SiC reinforced aluminium composite. Materials Today: Proceedings. 2019; 18:4092-101.
[Crossref] [Google Scholar]
[72]Dwarakesh S, Puviyarasan M. Experimental investigations on microstructure and mechanical properties of AA7075/SrCo3 composites fabricated using friction stir processing. Materials Today: Proceedings. 2020; 22:477-81.
[Crossref] [Google Scholar]
[73]Moharrami A, Razaghian A, Emamy M, Taghiabadi R. Effect of tool pin profile on the microstructure and tribological properties of friction stir processed Al-20 wt% Mg2Si composite. Journal of Tribology. 2019; 141(12).
[Crossref] [Google Scholar]
[74]Xu N, Ueji R, Fujii H. Enhanced mechanical properties of 70/30 brass joint by rapid cooling friction stir welding. Materials Science and Engineering: A. 2014; 610:132-8.
[Crossref] [Google Scholar]
[75]Rosales MJ, Alcantara NG, Santos J, Zettler R. The backing bar role in heat transfer on aluminium alloys friction stir welding. In materials science forum 2010 (pp. 459-64). Trans Tech Publications Ltd.
[Crossref] [Google Scholar]
[76]Kundurti SC, Sharma A, Tambe P, Kumar A. Fabrication of surface metal matrix composites for structural applications using friction stir processing–a review. Materials Today: Proceedings. 2022; 56:1468-77.
[Crossref] [Google Scholar]
[77]Iordachescu M, Scutelnicu E, Iordachescu D. Fundamentals of the process and tools design: friction stir processing of materials. The Annals of Dunarea de Jos University of Galati, Fascicle XII, Welding Equipment and Technology. 2006; 17:63-72.
[Google Scholar]
[78]Vijayavel P, Balasubramanian V, Sundaram S. Effect of shoulder diameter to pin diameter (D/d) ratio on tensile strength and ductility of friction stir processed LM25AA-5% SiCp metal matrix composites. Materials & Design. 2014; 57:1-9.
[Crossref] [Google Scholar]
[79]Mahmoud ER, Takahashi M, Shibayanagi T, Ikeuchi K. Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing. Wear. 2010; 268(9-10):1111-21.
[Crossref] [Google Scholar]
[80]Elangovan K, Balasubramanian V. Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy. Materials & Design. 2008; 29(2):362-73.
[Crossref] [Google Scholar]
[81]Elangovan K, Balasubramanian V. Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy. Journal of Materials Processing Technology. 2008; 200(1-3):163-75.
[Crossref] [Google Scholar]
[82]Azizieh M, Kokabi AH, Abachi P. Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Materials & Design. 2011; 32(4):2034-41.
[Crossref] [Google Scholar]
[83]Siddiquee AN, Pandey S. Experimental investigation on deformation and wear of WC tool during friction stir welding (FSW) of stainless steel. The International Journal of Advanced Manufacturing Technology. 2014; 73(1):479-86.
[Crossref] [Google Scholar]
[84]Çam G. Friction stir welded structural materials: beyond Al-alloys. International Materials Reviews. 2011; 56(1):1-48.
[Crossref] [Google Scholar]
[85]Zhang S, Shi Q, Liu Q, Xie R, Zhang G, Chen G. Effects of tool tilt angle on the in-process heat transfer and mass transfer during friction stir welding. International Journal of Heat and Mass Transfer. 2018; 125:32-42.
[Crossref] [Google Scholar]
[86]Long L, Chen G, Zhang S, Liu T, Shi Q. Finite-element analysis of the tool tilt angle effect on the formation of friction stir welds. Journal of Manufacturing Processes. 2017; 30:562-9.
[Crossref] [Google Scholar]
[87]Sharifitabar M, Sarani A, Khorshahian S, Afarani MS. Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route. Materials & Design. 2011; 32(8-9):4164-72.
[Crossref] [Google Scholar]
[88]Rathee S, Maheshwari S, Siddiquee AN, Srivastava M, Sharma SK. Process parameters optimization for enhanced microhardness of AA 6061/SiC surface composites fabricated via friction stir processing (FSP). Materials Today: Proceedings. 2016; 3(10):4151-6.
[Crossref] [Google Scholar]
[89]Lim DK, Shibayanagi T, Gerlich AP. Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing. Materials Science and Engineering: A. 2009; 507(1-2):194-9.
[Crossref] [Google Scholar]
[90]Sudhakar I, Madhu V, Reddy GM, Rao KS. Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing. Defence Technology. 2015; 11(1):10-7.
[Crossref] [Google Scholar]
[91]Huang G, Shen Y, Guo R, Guan W. Fabrication of tungsten particles reinforced aluminum matrix composites using multi-pass friction stir processing: evaluation of microstructural, mechanical and electrical behavior. Materials Science and Engineering: A. 2016; 674:504-13.
[Crossref] [Google Scholar]
[92]Sharma V, Prakash U, Kumar BM. Microstructural and mechanical characteristics of AA2014/SiC surface composite fabricated by friction stir processing. Materials Today: Proceedings. 2015; 2(4-5):2666-70.
[Crossref] [Google Scholar]
[93]Dolatkhah A, Golbabaei P, Givi MB, Molaiekiya F. Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Materials & Design. 2012; 37:458-64.
[Crossref] [Google Scholar]
[94]Yuvaraj N, Aravindan S. Comparison studies on mechanical and wear behavior of fabricated aluminum surface nano composites by fusion and solid state processing. Surface and Coatings Technology. 2017; 309:309-19.
[Crossref] [Google Scholar]
[95]Devaraju A, Kumar A, Kotiveerachari B. Influence of addition of Grp/Al2O3p with SiCp on wear properties of aluminum alloy 6061-T6 hybrid composites via friction stir processing. Transactions of Nonferrous Metals Society of China. 2013; 23(5):1275-80.
[Crossref] [Google Scholar]
[96]Kumar R, Kumar H, Kumar S, Chohan JS. Effects of tool pin profile on the formation of friction stir processing zone in AA1100 aluminium alloy. Materials Today: Proceedings. 2022; 48:1594-603.
[Crossref] [Google Scholar]
[97]Senthil V, Balasubramanian E. Examining the influence of shoulder to pin diameter ratio on corrosion behavior of friction stir LM25 aluminum alloy with 10% silicon carbide particles. Metal Powder Report. 2020; 75(5):288-99.
[Crossref] [Google Scholar]
[98]Kurt A, Uygur I, Cete E. Surface modification of aluminium by friction stir processing. Journal of Materials Processing Technology. 2011; 211(3):313-7.
[Crossref] [Google Scholar]
[99]Li C, Feng X, Shen Y, Chen W. Preparation of Al2O3/TiO2 particle-reinforced copper through plasma spraying and friction stir processing. Materials & Design. 2016; 90:922-30.
[Crossref] [Google Scholar]
[100]Zahmatkesh B, Enayati MH. A novel approach for development of surface nanocomposite by friction stir processing. Materials Science and Engineering: A. 2010; 527(24-25):6734-40.
[Crossref] [Google Scholar]
[101]Anvari SR, Karimzadeh F, Enayati MH. A novel route for development of Al–Cr–O surface nano-composite by friction stir processing. Journal of Alloys and Compounds. 2013; 562:48-55.
[Crossref] [Google Scholar]
[102]Mazaheri Y, Karimzadeh F, Enayati MH. A novel technique for development of A356/Al2O3 surface nanocomposite by friction stir processing. Journal of Materials Processing Technology. 2011; 211(10):1614-9.
[Crossref] [Google Scholar]
[103]Bahrami M, Givi MK, Dehghani K, Parvin N. On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique. Materials & Design. 2014; 53:519-27.
[Crossref] [Google Scholar]
[104]Bahrami M, Dehghani K, Givi MK. A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique. Materials & Design. 2014; 53:217-25.
[Crossref] [Google Scholar]
[105]Arora HS, Singh H, Dhindaw BK, Grewal HS. Some investigations on friction stir processed zone of AZ91 alloy. Transactions of the Indian Institute of Metals. 2012; 65(6):735-9.
[Crossref] [Google Scholar]
[106]Akramifard HR, Shamanian M, Sabbaghian M, Esmailzadeh M. Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing. Materials & Design (1980-2015). 2014; 54:838-44.
[Crossref] [Google Scholar]
[107]Mishra RS, Ma ZY, Charit I. Friction stir processing: a novel technique for fabrication of surface composite. Materials Science and Engineering: A. 2003; 341(1-2):307-10.
[Crossref] [Google Scholar]
[108]Hodder KJ, Izadi H, Mcdonald AG, Gerlich AP. Fabrication of aluminum–alumina metal matrix composites via cold gas dynamic spraying at low pressure followed by friction stir processing. Materials Science and Engineering: A. 2012; 556:114-21.
[Google Scholar]
[109]Arab SM, Karimi S, Jahromi SA, Javadpour S, Zebarjad SM. Fabrication of novel fiber reinforced aluminum composites by friction stir processing. Materials Science and Engineering: A. 2015; 632:50-7.
[Crossref] [Google Scholar]
[110]Heydarian A, Dehghani K, Slamkish T. Optimizing powder distribution in production of surface nano-composite via friction stir processing. Metallurgical and Materials Transactions B. 2014; 45(3):821-6.
[Crossref] [Google Scholar]
[111]Reynolds AP. Flow visualization and simulation in FSW. Scripta Materialia. 2008; 58(5):338-42.
[Crossref] [Google Scholar]
[112]Hwang YM, Kang ZW, Chiou YC, Hsu HH. Experimental study on temperature distributions within the workpiece during friction stir welding of aluminum alloys. International Journal of Machine Tools and Manufacture. 2008; 48(7-8):778-87.
[Crossref] [Google Scholar]
[113]Zohoor M, Givi MB, Salami P. Effect of processing parameters on fabrication of Al–Mg/Cu composites via friction stir processing. Materials & Design. 2012; 39:358-65.
[Crossref] [Google Scholar]
[114]Zhang Z, Chen DL. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Materials Science and Engineering: A. 2008; 483:148-52.
[Crossref] [Google Scholar]
[115]Amirkhanlou S, Niroumand B. Development of Al356/SiCp cast composites by injection of SiCp containing composite powders. Materials & Design. 2011; 32(4):1895-902.
[Crossref] [Google Scholar]
[116]Patel SK, Singh VP, Kumar D, Roy BS, Kuriachen B. Microstructural, mechanical and wear behavior of A7075 surface composite reinforced with WC nanoparticle through friction stir processing. Materials Science and Engineering: B. 2022.
[Crossref] [Google Scholar]
[117]Pantelis D, Tissandier A, Manolatos P, Ponthiaux P. Formation of wear resistant Al–SiC surface composite by laser melt–particle injection process. Materials Science and Technology. 1995; 11(3):299-303.
[Crossref] [Google Scholar]
[118]Patel SK, Singh VP, Kuriachen B. Microstructural, tribological and mechanical properties evolution of ZrSiO4/A4047 surface composite fabricated through friction stir processing. Transactions of the Indian Institute of Metals. 2019; 72(7):1765-74.
[Crossref] [Google Scholar]
[119]Matei A, Tutunaru O, Tucureanu V. Surface pre-treatment of aluminum alloys for the deposition of composite materials. Materials Science and Engineering: B. 2021.
[Crossref] [Google Scholar]
[120]Yuvaraj N, Aravindan S. Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization. Journal of Materials Research and Technology. 2015; 4(4):398-410.
[Crossref] [Google Scholar]
[121]Raaft M, Mahmoud TS, Zakaria HM, Khalifa TA. Microstructural, mechanical and wear behavior of A390/graphite and A390/Al2O3 surface composites fabricated using FSP. Materials Science and Engineering: A. 2011; 528(18):5741-6.
[Crossref] [Google Scholar]
[122]Deuis RL, Subramanian C, Yellup JM. Dry sliding wear of aluminium composites—a review. Composites science and technology. 1997; 57(4):415-35.
[Crossref] [Google Scholar]
[123]Mazaheri Y, Karimzadeh FA, Enayati MH. Tribological behavior of A356/Al2O3 surface nanocomposite prepared by friction stir processing. Metallurgical and Materials Transactions A. 2014; 45(4):2250-9.
[Crossref] [Google Scholar]
[124]Alidokht SA, Abdollah-Zadeh A, Soleymani S, Assadi H. Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing. Materials & Design. 2011; 32(5):2727-33.
[Crossref] [Google Scholar]
[125]Mahmoud TS. Surface modification of A390 hypereutectic Al–Si cast alloys using friction stir processing. Surface and Coatings Technology. 2013; 228:209-20.
[Crossref] [Google Scholar]
[126]Patel K, Ghetiya ND, Bharti S. Effect of single and double pass friction stir processing on microhardness and wear properties of AA5083/Al2O3 surface composites. Materials Today: Proceedings. 2022; 57:38-43.
[Crossref] [Google Scholar]
[127]Maji P, Nath RK, Paul P, Meitei RB, Ghosh SK. Effect of processing speed on wear and corrosion behavior of novel MoS2 and CeO2 reinforced hybrid aluminum matrix composites fabricated by friction stir processing. Journal of Manufacturing Processes. 2021; 69:1-11.
[Crossref] [Google Scholar]
[128]Ansari AJ, Anas M. Microstructure and mechanical behaviour of reinforced aluminium-based surface composites synthesized by friction stir processing route: a review. Tailored Functional Materials. 2022:397-408.
[Crossref] [Google Scholar]
[129]Akbari M, Shojaeefard MH, Asadi P, Khalkhali A. Wear and mechanical properties of surface hybrid metal matrix composites on Al–Si aluminum alloys fabricated by friction stir processing. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2019; 233(5):790-9.
[Crossref] [Google Scholar]
[130]Li K, Liu X, Zhao Y. Research status and prospect of friction stir processing technology. Coatings. 2019; 9(2):1-14.
[Crossref] [Google Scholar]
[131]Mahmoud ER, Ikeuchi K, Takahashi M. Fabrication of SiC particle reinforced composite on aluminium surface by friction stir processing. Science and Technology of Welding and Joining. 2008; 13(7):607-18.
[Crossref] [Google Scholar]
[132]Tutunchilar S, Haghpanahi M, Givi MB, Asadi P, Bahemmat P. Simulation of material flow in friction stir processing of a cast Al–Si alloy. Materials & Design. 2012; 40:415-26.
[Crossref] [Google Scholar]
[133]Barmouz M, Seyfi J, Givi MK, Hejazi I, Davachi SM. A novel approach for producing polymer nanocomposites by in-situ dispersion of clay particles via friction stir processing. Materials Science and Engineering: A. 2011; 528(6):3003-6.
[Crossref] [Google Scholar]
[134]Azarsa E, Mostafapour A. On the feasibility of producing polymer–metal composites via novel variant of friction stir processing. Journal of Manufacturing Processes. 2013; 15(4):682-8.
[Crossref] [Google Scholar]
[135]Zinati RF, Razfar MR, Nazockdast H. Numerical and experimental investigation of FSP of PA 6/MWCNT composite. Journal of Materials Processing Technology. 2014; 214(11):2300-15.
[Crossref] [Google Scholar]
[136]Farshbaf Zinati R. Experimental evaluation of ultrasonic-assisted friction stir process effect on in situ dispersion of multi-walled carbon nanotubes throughout polyamide 6. The International Journal of Advanced Manufacturing Technology. 2015; 81(9):2087-98.
[Crossref] [Google Scholar]
[137]Hangai Y, Utsunomiya T. Fabrication of porous aluminum by friction stir processing. Metallurgical and Materials Transactions A. 2009; 40(2):275-7.
[Crossref] [Google Scholar]
[138]Hangai Y, Koyama S, Hasegawa M, Utsunomiya T. Fabrication of aluminum foam/dense steel composite by friction stir welding. Metallurgical and Materials Transactions A. 2010; 41(9):2184-6.
[Crossref] [Google Scholar]
[139]Hangai Y, Utsunomiya T, Hasegawa M. Effect of tool rotating rate on foaming properties of porous aluminum fabricated by using friction stir processing. Journal of Materials Processing Technology. 2010; 210(2):288-92.
[Crossref] [Google Scholar]
[140]Sharma DK, Patel V, Badheka V, Mehta K, Upadhyay G. Fabrication of hybrid surface composites AA6061/(B4C+ MoS2) via friction stir processing. Journal of Tribology. 2019; 141(5).
[Crossref] [Google Scholar]
[141]Mehta KA, Badheka VJ. Wear behavior of boron-carbide reinforced aluminum surface composites fabricated by Friction Stir Processing. Wear. 2019; 426:975-80.
[Crossref] [Google Scholar]
[142]Azizieh M, Iranparast D, Dezfuli MA, Balak Z, Kim HS. Fabrication of Al/Al2Cu in situ nanocomposite via friction stir processing. Transactions of Nonferrous Metals Society of China. 2017; 27(4):779-88.
[Crossref] [Google Scholar]
[143]Amra M, Ranjbar K, Hosseini SA. Microstructure and wear performance of Al5083/CeO2/SiC mono and hybrid surface composites fabricated by friction stir processing. Transactions of Nonferrous Metals Society of China. 2018; 28(5):866-78.
[Crossref] [Google Scholar]
[144]Srivastava AK, Maurya NK, Dixit AR, Dwivedi SP, Saxena A, Maurya M. Experimental investigations of A359/Si3N4 surface composite produced by multi-pass friction stir processing. Materials Chemistry and Physics. 2021.
[Crossref] [Google Scholar]
[145]Hosseini SA, Ranjbar K, Dehmolaei R, Amirani AR. Fabrication of Al5083 surface composites reinforced by CNTs and cerium oxide nano particles via friction stir processing. Journal of Alloys and Compounds. 2015; 622:725-33.
[Crossref] [Google Scholar]
[146]Alishavandi M, Khollari MA, Ebadi M, Alishavandi S, Kokabi AH. Corrosion-wear behavior of AA1050/mischmetal oxides surface nanocomposite fabricated by friction stir processing. Journal of Alloys and Compounds. 2020.
[Crossref] [Google Scholar]
[147]Pol N, Verma G, Pandey RP, Shanmugasundaram T. Fabrication of AA7005/TiB2-B4C surface composite by friction stir processing: evaluation of ballistic behaviour. Defence Technology. 2019; 15(3):363-8.
[Crossref] [Google Scholar]
[148]Kumar S, Srivastava AK, Singh RK. Fabrication of AA7075 hybrid green metal matrix composites by friction stir processing. Annales De Chimie-Science Des Matériaux 2020; 44(4):295-300.
[Google Scholar]
[149]García-vázquez F, Vargas-arista B, Muñiz R, Ortiz JC, García HH, Acevedo J. The role of friction stir processing (FSP) parameters on TiC reinforced surface Al7075-T651 aluminum alloy. Soldagem & Inspeção. 2016; 21:508-16.
[Crossref] [Google Scholar]
[150]Kandasamy S, Rathinasamy P, Nagarajan N, Karumalai D, Thangamuthu M, Palaniappan M. Assessment of erosion rate on AA7075 based surface hybrid composites fabricated through friction stir processing by Taguchi optimization approach. Journal of Adhesion Science and Technology. 2022; 36(6):584-605.
[Crossref] [Google Scholar]
[151]Parumandla N, Adepu K. Effect of tool shoulder geometry on fabrication of Al/Al2O3 surface nano composite by friction stir processing. Particulate Science and Technology. 2020; 38(1):121-30.
[Crossref] [Google Scholar]
[152]Sharma A, Sharma VM, Mewar S, Pal SK, Paul J. Friction stir processing of Al6061-SiC-graphite hybrid surface composites. Materials and Manufacturing Processes. 2018; 33(7):795-804.
[Crossref] [Google Scholar]
[153]Ikumapayi OM, Akinlabi ET, Majumdar JD, Akinlabi SA. Characterization of high strength aluminium–based surface matrix composite reinforced with low-cost PKSA fabricated by friction stir processing. Materials Research Express. 2019; 6(10).
[Crossref] [Google Scholar]
[154]Sharma A, Mani SV, Sahoo B, Joseph J, Paul J. Study of nano-mechanical, electrochemical and Raman spectroscopic behavior of Al6061-SiC-graphite hybrid surface composite fabricated through friction stir processing. Journal of Composites Science. 2018; 2(2):1-17.
[Crossref] [Google Scholar]
[155]Gangil N, Maheshwari S, Nasr EA, El-tamimi AM, El-meligy MA, Siddiquee AN. Another approach to characterize particle distribution during surface composite fabrication using friction stir processing. Metals. 2018; 8(8):1-14.
[Crossref] [Google Scholar]
[156]Butola R, Ranganath MS, Murtaza Q. Fabrication and optimization of AA7075 matrix surface composites using Taguchi technique via friction stir processing (FSP). Engineering Research Express. 2019; 1(2):1-11.
[Crossref] [Google Scholar]